Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 3
Page No. 670 - 678

Effect of Rotation on the Rayleigh-Benard Convection in Nanofluid Layer with Vertical Magnetic Field and Internal Heat Source

Authors : Izzati Khalidah Khalid, Nor Fadzillah Mohd Mokhtar, Zarina Bibi Ibrahim and Siti Salwa Abdul Gani

References

Agarwal, S., 2014. Natural convection in a nanofluid-saturated rotating porous layer: A more realistic approach. Trans. Porous Media, 104: 581-592.
CrossRef  |  Direct Link  |  

Al-Zamily, A.M.J., 2014. Effect of magnetic field on natural convection in a nanofluid-filled semi-circular enclosure with heat flux source. Comput. Fluids, 103: 71-85.
Direct Link  |  

Bansal, S. and D. Chatterjee, 2015. Magneto-convective transport of nanofluid in a vertical lid-driven cavity including a heat-conducting rotating circular cylinder. Numer. Heat Transfer, Appl., 68: 411-431.
Direct Link  |  

Bhadauria, B.S., A. Kumar, J. Kumar, N.C. Sacheti and P. Chandran, 2011. Natural convection in a rotating anisotropic porous layer with internal heat generation. Trans. Porous Media, 90: 687-705.
CrossRef  |  Direct Link  |  

Bhattacharyya, S.P. and S.K. Jena, 1984. Thermal instability of a horizontal layer of micropolar fluid with heat source. Proc. Indian Acad. Sci. Math. Sci., 93: 13-26.
CrossRef  |  Direct Link  |  

Buongiorno, J., 2006. Convective transport in nanofluids. ASME J. Heat Transfer, 128: 240-250.
CrossRef  |  Direct Link  |  

Capone, F., M. Gentile and A.A. Hill, 2011. Double-diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with through flow. Intl. J. Heat Mass Transfer, 54: 1622-1626.
Direct Link  |  

Chand, R and G.C. Rana, 2015. Magneto convection in a layer of nanofluid with soret effect. Acta Mech. Autom., 9: 63-69.
CrossRef  |  Direct Link  |  

Chandrasekhar, S., 1961. The Stability of Superposed Fluids: The Rayleigh-Taylar Instability, in Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford.

Char, M.I. and K.T. Chiang, 1994. Stability analysis of benard-marangoni convection in fluids with internal heat generation. J. Phys. Appl. Phys., 27: 748-755.
Direct Link  |  

Choi, S.U.S., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Developments and Applications of Non-Newtonian Flows, Siginer, D.A. and H.P. Wang (Eds.). American Society of Mechanical Engineers, New York, pp: 99-105.

Eapen, J., R. Rusconi, R. Piazza and S. Yip, 2010. The classical nature of thermal conduction in nanofluids. J. Heat Transfer, Vol. 132. 10.1115/1.4001304

Farshad, M., 1956. The History of Engineering in Iran. Balkh Publication, Tehran, Iran,.

Friedrich, R. and N. Rudraiah, 1984. Marangoni convection in a rotating fluid layer with non-uniform temperature gradient. Intl. J. Heat Mass Transfer, 27: 443-449.
Direct Link  |  

Gupta, U., J. Ahuja and R.K. Wanchoo, 2013. Magneto convection in a nanofluid layer. Intl. J. Heat Mass Transfer, 64: 1163-1171.
Direct Link  |  

Hamad, M.A.A., I. Pop and A.I. Md Ismail, 2011. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Anal.: Real World Appl., 12: 1338-1346.
CrossRef  |  

Hashim, I. and W. Sarma, 2004. The effect of coriolis force on marangoni convection. Proceedings of the 15th Australian Conference on Fluid Mechanics, December 13-17, 2004, University of Sydney, Sydney, New South Wales, pp: 1-4.

Kaddame, A. and G. Lebon, 1994. Benard-marangoni convection in a rotating fluid with and without surface deformation. Appl. Sci. Res., 52: 295-308.
CrossRef  |  Direct Link  |  

Kaddame, A. and G. Lebon, 1994. Overstability in rotating benard-marangoni cells. Microgravity Q., 4: 69-74.

Khalid, I.K., N.F.M. Mokhtar and N.M. Arifin, 2013. Uniform solution on the combined effect of magnetic field and internal heat generation on Rayleigh-benard convection in micropolar fluid. J. Heat Transfer, 135: 1-6.
CrossRef  |  Direct Link  |  

Kim, S.J., I.C. Bang, J. Buongiorno and L.W. Hu, 2006. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl. Phys. Lett., 89: 153107-153107.
Direct Link  |  

Mahmud, M.N., R. Idris and I. Hashim, 2009. Effect of a magnetic field on the onset of Marangoni convection in a micropolar fluid. World Acad. Sci. Eng. Technol., 35: 523-525.
Direct Link  |  

Masuda, H., A. Ebata, K. Teramae and N. Hishinuma, 1993. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. NetsuBussei, 7: 227-233.

McConaghy, G.A. and B.A. Finlayson, 1969. Surface tension driven oscillatory instability in a rotating fluid layer. J. Fluid Mech., 39: 49-55.
Direct Link  |  

Mehrian, S.M.N. and S.Z. Mehrian, 2015. Modification of space truss vibration using piezoelectric actuator. Applied Mech. Mater., 811: 246-252.
CrossRef  |  Direct Link  |  

Memarian, G.H., 1971. Niaresh Iranian Architecture. Naghmeh Navadish Publications, Tehran, Iran,.

Mohammad, P.N.K. and G.H. Memarian, 1972. Introduction to Islamic Architecture of Iran. Soroush Danesh Publications, Tehran, Iran,.

Mohammad, P.N.K., 1950. Dome in architecture of Iran. J. Sci. Techn. Artistic, 20: 165-165.

Mohammad, P.N.K., 1969. Architecture Stylistics of Iran. Soroush Danesh Publications, Tehran, Iran,.

Mohammadi, M., J. Nistani, M. Moosavi and H. Alireza, 1970. The study of typology, elements and implementation of architecture of Iran in the Sassanid era. Pub. Archaeol., 1: 83-104.

Mokhtar, N.F.M., M. Suleiman, F. Ismail and R. Nazar, 2009. Marangoni convection in a liquid saturated porous medium with internal heat generation. Far East J. Mathe. Sci., 34: 269-283.
Direct Link  |  

Mokhtar, N.M., N.M. Arifin, R. Nazar, F. Ismail and M. Suleiman, 2010. Effect of internal heat generation on Marangoni convection in a fluid saturated porous medium. Intl. J. Appl. Math. Stat., 19: 112-122.
Direct Link  |  

Mokhtar, N.M., N.M. Arifin, R. Nazar, F. Ismail and M. Suleiman, 2011. Effect of internal heat generation on Marangoni convection in a superposed fluid-porous layer with deformable free surface. Intl. J. Phys. Sci., 6: 5550-5563.
Direct Link  |  

Namikawa, T., M. Takashima and S. Matsushita, 1970. The effect of rotation on convective instability induced by surface tension and buoyancy. J. Phys. Soc. Japan, 28: 1340-1349.
Direct Link  |  

Nanjundappa, C.E., I.S. Shivakumara and J. Lee, 2015. Effect of coriolis force on benard-marangoni convection in a rotating ferrofluid layer with MFD viscosity. Microgravity Sci. Technol., 27: 27-37.
CrossRef  |  Direct Link  |  

Nield, D.A. and A.V. Kuznetsov, 2010. The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mechanics-B/Fluids, 29: 217-223.
CrossRef  |  

Nield, D.A. and A.V. Kuznetsov, 2011. The onset of double-diffusive convection in a nanofluid layer. Intl. J. Heat Fluid Flow, 32: 771-776.
Direct Link  |  

Nield, D.A. and A.V. Kuznetsov, 2014. The onset of convection in an internally heated nanofluid layer. J. Heat Transfer, 136: 1-5.
CrossRef  |  Direct Link  |  

Qobadian, V., 1965. The Climate Investigation of Traditional Buildings in Iran. Publishing and Printing Institute of Tehran University, Tehran, Iran,.

Rajabi, M. and A. Mozaffari, 1972. Theory and Practice of Monuments, (Pathology and Technology). Jamal Art Publishing, Tehran, Iran,.

Rao, K.R., 1980. Thermal instability in a micropolar fluid layer subject to a magnetic field. Intl. J. Eng. Sci., 18: 741-750.
Direct Link  |  

Rudraiah, N., O.P. Chandna and M.R. Garg, 1986. Effect of nonuniform temperature-gradient on magnetoconvection driven by surface-tension and buoyancy. Indian J. Technol., 24: 279-284.

Savino, R. and D. Paterna, 2008. Thermodiffusion in nanofluids under different gravity conditions. Phys. Fluids, 20: 1-3.
Direct Link  |  

Sheikholeslami, M., F.B. Sheykholeslami, S. Khoshhal, H. Mola-Abasia, D.D. Ganji et al., 2014. Effect of magnetic field on Cu-water nanofluid heat transfer using GMDH-type neural network. Neural Comput. Appl., 25: 171-178.
CrossRef  |  Direct Link  |  

Sheikholeslami, M., M. Gorji-Bandpy, D.D. Ganji, P. Rana and S. Soleimani, 2014. Magnetohydrodynamic free convection of Al 2O3-water nanofluid considering thermophoresis and Brownian motion effects. Comput. Fluids, 94: 147-160.
Direct Link  |  

Sheikholeslami, M., M. Hatami and G. Domairry, 2015. Numerical simulation of two phase unsteady nanofluid flow and heat transfer between parallel plates in presence of time dependent magnetic field. J. Taiwan Inst. Chem. Eng., 46: 43-50.
Direct Link  |  

Vafamehr, M. and S. Taghavi, 1968. Investigating the formation of the dome with a review of Islamic and Iranian domes. Int. Mag. Road Build., 63: 46-55.

Vidal, A. and A. Acrivos, 1966. The influence of Coriolis Force on surface-tension-driven convection. J. Fluid Mech., 26: 807-818.
Direct Link  |  

Wakif, A., Z. Boulahia and R. Sehaqui, 2016. Numerical study of a thermal convection induced by a purely internal heating in a rotating medium saturated by a radiating nanofluid. Intl. J. Comput. Appl., 135: 33-42.
Direct Link  |  

Wilbur, D., 1945. Islamic Architecture during Ilkhani. Cultural and Scientific Publications, Tehran, Iran,.

Wilson, S.K., 1994. The effect of a uniform magnetic field on the onset of steady marangoni convection in a layer of conducting fluid with a prescribed heat flux at its lower boundary. Phys. Fluids, 6: 3591-3600.
Direct Link  |  

Yadav, D., C. Kim, J. Lee and H.H. Cho, 2015. Influence of magnetic field on the onset of nanofluid convection induced by purely internal heating. Comput. Fluids, 121: 26-36.
Direct Link  |  

Yadav, D., G.S. Agrawal and J. Lee, 2016. Thermal instability in a rotating nanofluid layer: A revised model. Ain Shams Eng. J., 7: 431-440.
Direct Link  |  

Yadav, D., G.S. Agrawal and R. Bhargava, 2012. Effect of magnetic field on the rayleigh-benard convection in a nanofluid layer: Rigidrigid boundaries. Proceedings of the 2012 IEEE International Conference on Engineering Education: Innovative Practices and Future Trends (AICERA), July 19-21, 2012, IEEE, Roorkee, India, ISBN:978-1-4673-2267-6, pp: 1-6.

Yadav, D., R. Bhargava and G.S. Agrawal, 2012. Boundary and internal heat source effects on the onset of darcy-brinkman convection in a porous layer saturated by nanofluid. Intl. J. Therm. Sci., 60: 244-254.
Direct Link  |  

Yadav, D., R. Bhargava and G.S. Agrawal, 2013. Thermal instability in a nanofluid layer with a vertical magnetic field. J. Eng. Math., 80: 147-164.
CrossRef  |  Direct Link  |  

Yadav, D., R. Bhargava, G.S. Agrawal, G.S. Hwang and J. Lee et al., 2014. Magneto convection in a rotating layer of nanofluid. Asia Pac. J. Chem. Eng., 9: 663-677.
CrossRef  |  Direct Link  |  

Zomarshidi, H., 1948. Implementation of Building with Traditional Materials. Afshar Publications, Tehran, Iran,.

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved