Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 24
Page No. 10474 - 10481

MHD Stagnation-Point Flow of a Nanofluid past a Stretching/Shrinking Sheet with Induced Magnetic Field

Authors : Mohamad Mustaqim Junoh, Fadzilah Md Ali and Ioan Pop

References

Ali, F.M., R. Nazar, N.M. Arifin and I. Pop, 2011. MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat Mass Transfer, 47: 155-162.
CrossRef  |  PubMed  |  Direct Link  |  

Ali, F.M., R. Nazar, N.M. Arifin and I. Pop, 2011. MHD mixed convection boundary layer flow toward a stagnation point on a vertical surface with induced magnetic field. J. Heat Transfer, 133: 1-6.
CrossRef  |  Direct Link  |  

Ali, F.M., R. Nazar, N.M. Arifin and I. Pop, 2011. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Appl. Math. Mech., 32: 409-418.
CrossRef  |  Direct Link  |  

Aman, F., A. Ishak and I. Pop, 2013. Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects. Intl. Commun. Heat Mass Transfer, 47: 68-72.
CrossRef  |  Direct Link  |  

Bachok, N., A. Ishak and I. Pop, 2011. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Res. Lett., 6: 623-632.
CrossRef  |  Direct Link  |  

Buongiorno, J., 2006. Convective transport in nanofluids. ASME J. Heat Transfer, 128: 240-250.
CrossRef  |  Direct Link  |  

Choi, S.U.S., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Developments and Applications of Non-Newtonian Flows, Siginer, D.A. and H.P. Wang (Eds.). American Society of Mechanical Engineers, New York, pp: 99-105.

Davies, T.V., 1963. The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infinite flat plate I, uniform conditions at infinity. Proc. R. Soc. A., 273: 496-508.
CrossRef  |  Direct Link  |  

Harris, S.D., D.B. Ingham and I. Pop, 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Trans. Porous Media, 77: 267-285.
CrossRef  |  Direct Link  |  

Ishak, A., R. Nazar and I. Pop, 2006. Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet. Meccanica, 41: 509-518.
CrossRef  |  Direct Link  |  

Kumari, M., H.S. Takhar and G. Nath, 1990. MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux. Warme Stoffubertragung, 25: 331-336.
CrossRef  |  Direct Link  |  

Kuznetsov, A.V. and D.A. Nield, 2010. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Thermal Sci., 49: 243-247.
CrossRef  |  Direct Link  |  

Kuznetsov, A.V. and D.A. Nield, 2010. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Thermal Sci., 49: 243-247.
CrossRef  |  Direct Link  |  

Makinde, O.D., W.A. Khan and Z.H. Khan, 2013. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Intl. J. Heat Mass Transfer, 62: 526-533.
Direct Link  |  

Mansur, S., A. Ishak and I. Pop, 2015. The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction. PLoS One, 10: 1-14.
CrossRef  |  PubMed  |  Direct Link  |  

Mustafa, M., T. Hayat, I. Pop, S. Asghar and S. Obaidat, 2011. Stagnation-point flow of a nanofluid towards a stretching sheet. Intl. J. Heat Mass Transfer, 54: 5588-5594.
CrossRef  |  Direct Link  |  

Nandy, S.K. and T.R. Mahapatra, 2013. Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions. Intl. J. Heat Mass Transfer, 64: 1091-1100.
CrossRef  |  Direct Link  |  

Takhar, H.S., M. Kumari and G. Nath, 1993. Unsteady free convection flow under the influence of a magnetic field. Arch. Appl. Mech., 63: 313-321.
CrossRef  |  Direct Link  |  

Zaimi, K., A. Ishak and I. Pop, 2012. Boundary layer flow and heat transfer past a permeable shrinking sheet in a nanofluid with radiation effect. Adv. Mech. Eng., 4: 1-7.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved