Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 23
Page No. 9961 - 9967

Influence of Solution pH and NH3 Concentration on Some Properties of CuO Thin Films Deposited by Chemical Solution Method

Authors : Asala H. Ali, Ibtisam J. Abd Ali Al-Fatlawi, Ali Hassan Ressen and Adel H. Omran Alkhayatt

References

Alkhayatt, A.H.O. and S.K. Hussian, 2017. Fluorine dopant concentration effect on the structural and optical properties of spray deposited nanocrystalline ZnO thin films. Surf. Interfaces, 8: 176-181.
Direct Link  |  

Alkhayatt, O., H. Adel and A.H. Ali, 2018. Influence of cycles number and time on the structural, surface morphology and some optical properties of CuO nanostructure thin film prepared by silar method. Sens. Lett., 16: 64-70.
CrossRef  |  Direct Link  |  

Anandan, S., X. Wen and S. Yang, 2005. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys., 93: 35-40.
CrossRef  |  Direct Link  |  

Bayansal, F., B. Sahin, M. Yuksel, N. Biyikli and H.A. Cetinkara et al., 2013. Influence of coumarin as an additive on CuO nanostructures prepared by successive ionic layer adsorption and reaction (SILAR) method. J. Alloys Compd., 566: 78-82.
Direct Link  |  

Bayansal, F., H.A. Cetinkara, S. Kahraman, H.M. Cakmak and H.S. Guder, 2012. Nano-structured CuO films prepared by simple solution methods: Plate-like, needle-like and network-like architectures. Ceram. Intl., 38: 1859-1866.
CrossRef  |  Direct Link  |  

Bayansal, F., M. Yuksel and B. Sahin, 2016. Facile fabrication and characterization of SnxCu(1-x)O composite films by the SILAR method on glass substrates. J. Alloys Compd., 664: 38-44.
CrossRef  |  Direct Link  |  

Chen, L.B., N. Lu, C.M. Xu, H.C. Yu and T.H. Wang, 2009. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim Acta, 54: 4198-4201.
CrossRef  |  Direct Link  |  

Choi, K.J. and H.W. Jang, 2010. One-dimensional oxide nanostructures as gas-sensing materials: Review and issues. Sens., 10: 4083-4099.
CrossRef  |  PubMed  |  Direct Link  |  

Dhanasekaran, V. and T. Mahalingam, 2012. Physical properties evaluation of various substrates coated cupric oxide thin films by dip method. J. Alloys Compd., 539: 50-56.
Direct Link  |  

Dhanasekaran, V., T. Mahalingam and V. Ganesan, 2013. SEM and AFM studies of dip‐coated CuO nanofilms. Microsc. Res. Tech., 76: 58-65.
CrossRef  |  PubMed  |  Direct Link  |  

Dhanasekaran, V., T. Mahalingam, R. Chandramohan, J.K. Rhee and J.P. Chu, 2012. Electrochemical deposition and characterization of cupric oxide thin films. Thin Solid Films, 520: 6608-6613.
CrossRef  |  Direct Link  |  

Gamino, M., D.A.M.H. Andrade, J.S. Cuaila, J.E. Schmidt and V. Skumryev et al., 2018. Exchange bias and major coercivity enhancement in strongly-coupled CuO/Co films. J. Magn. Magn. Mater., 449: 5-9.
Direct Link  |  

Gencyılmaz, O. and T. Taskopru, 2017. Effect of pH on the synthesis of CuO films by SILAR method. J. Alloys Compd., 695: 1205-1212.
CrossRef  |  Direct Link  |  

Ghosh, S., D.K. Avasthi, P. Shah, V. Ganesan and A. Gupta et al., 2000. Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vac., 57: 377-385.
Direct Link  |  

Goodarzi, M.T. and H. Eshghi, 2018. Fabrication and characterization of CuO/ZnO: Al photo-diode prepared by spray pyrolysis method. Mater. Lett., 215: 79-82.
Direct Link  |  

Hu, X., F. Gao, Y. Xiang, H. Wu and X. Zheng et al., 2016. Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition. Mater. Lett., 176: 282-284.
CrossRef  |  Direct Link  |  

Jindal, K., M. Tomar and V. Gupta, 2012. CuO thin film based uric acid biosensor with enhanced response characteristics. Bios. Bioelectron., 38: 11-18.
PubMed  |  Direct Link  |  

Lakhdar, M.H., B. Ouni and M. Amlouk, 2014. Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films. Optik Intl. J. Light Electron Opt., 125: 2295-2301.
CrossRef  |  Direct Link  |  

Liu, J., J. Jin, Z. Deng, S.Z. Huang and Z.Y. Hu et al., 2012. Tailoring CuO nanostructures for enhanced photocatalytic property. J. Colloid Interface Sci., 384: 1-9.
CrossRef  |  PubMed  |  Direct Link  |  

Luque, G.L., M.C. Rodriguez and G.A. Rivas, 2005. Glucose biosensors based on the immobilization of copper oxide and glucose oxidase within a carbon paste matrix. Talanta, 66: 467-471.
PubMed  |  Direct Link  |  

Mageshwari, K. and R. Sathyamoorthy, 2013. Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process., 16: 337-343.
CrossRef  |  Direct Link  |  

Masudy-Panah, S., S.R. Moakhar, C.S. Chua, H.R. Tan and T.I. Wong et al., 2016. Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting. ACS Appl. Mater. Interfaces, 8: 1206-1213.
CrossRef  |  PubMed  |  Direct Link  |  

Ooi, P.K., M.A. Ahmad, S.S. Ng and M.J. Abdullah, 2014. Characterizations of nitrogen doped cupric oxide thin films deposited on different substrates for solar cell applications. Adv. Mater. Res., 925: 469-473.
CrossRef  |  Direct Link  |  

Ramya, V., K. Neyvasagam, R. Chandramohan, S. Valanarasu and A.M.F. Benial, 2015. Studies on chemical bath deposited CuO thin films for solar cells application. J. Mater. Sci. Mater. Electron., 26: 8489-8496.
CrossRef  |  Direct Link  |  

Sonia, S., I.J. Annsi, P.S. Kumar, D. Mangalaraj and C. Viswanathan et al., 2015. Hydrothermal synthesis of novel Zn doped CuO nanoflowers as an efficient photodegradation material for textile dyes. Mater. Lett., 144: 127-130.
CrossRef  |  Direct Link  |  

Sultana, J., S. Paul, A. Karmakar, R. Yi and G.K. Dalapati et al., 2017. Chemical Bath Deposited (CBD) CuO thin films on N-silicon substrate for electronic and optical applications: Impact of growth time. Appl. Surf. Sci., 418: 380-387.
CrossRef  |  Direct Link  |  

Urbach, F., 1953. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev., 92: 1324-1324.
CrossRef  |  

Wang, Y., T. Jiang, D. Meng, J. Yang and Y. Li et al., 2014. Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl. Surface Sci., 317: 414-421.
Direct Link  |  

Wu, D., Q. Zhang and M. Tao, 2006. LSDA+U study of cupric oxide: Electronic structure and native point defects. Phys. Rev. B., Vol. 73, 10.1103/PhysRevB.73.235206

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved