Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 2 SI
Page No. 5585 - 5591

Evaluation and Analysis of Lightweight Concrete (LWC) Manufacturing and Applications

Authors : Amenah E.Mohammed Redha

References

ACI Committee 213, American Concrete Institute, 2014. Guide for Structural Lightweight-Aggregate Concrete. American Concrete Institute, Michigan, USA., ISBN:9780870318979, Pages: 53.

Akcaozoglu, S. and C.D. Atis, 2011. Effect of granulated blast furnace slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates. Constr. Build. Mater., 25: 4052-4058.
CrossRef  |  Direct Link  |  

Berge, B., 2009. The Ecology of Building Materials. 2nd Edn., Princeton Architectural Press, New York, USA., ISBN:978-185617-537-1, Pages: 421.

Bogas, J.A. and A. Gomes, 2015. Non-steady-state accelerated chloride penetration resistance of structural lightweight aggregate concrete. Cem. Concr. Compos., 60: 111-122.
CrossRef  |  Direct Link  |  

Castro, J., L. Keiser, M. Golias and J. Weiss, 2011. Absorption and desorption properties of fine lightweight aggregate for application to internally cured concrete mixtures. Cem. Concr. Compos., 33: 1001-1008.
CrossRef  |  Direct Link  |  

Chemani, B. and H. Chemani, 2012. Effect of adding sawdust on mechanical-Physical properties of ceramic bricks to obtain lightweight building material. World Acad. Sci. Eng. Technol., 6: 2521-2525.

Chung, S.Y., M.A. Elrahman and D. Stephan, 2017. Effect of different gradings of lightweight aggregates on the properties of concrete. Appl. Sci., 7: 1-15.
CrossRef  |  Direct Link  |  

Demirboga, R. and A. Kan, 2012. Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes. Constr. Build. Mater., 35: 730-734.
CrossRef  |  Direct Link  |  

Ducman, V. and B. Mirtic, 2009. The applicability of different waste materials for the production of lightweight aggregates. Waste Manage., 29: 2361-2368.
CrossRef  |  PubMed  |  Direct Link  |  

El-Gamal, S.M.A., F.S. Hashem and M.S. Amin, 2012. Thermal resistance of hardened cement pastes containing vermiculite and expanded vermiculite. J. Therm. Anal. Calorim., 109: 217-226.
Direct Link  |  

Hafid, S.A. and A.E.M. Ridha, 2016. A comparative study of thermal insulations and physical properties of lightweight concrete using some raw materials. Eng. Technol. J., 34: 470-478.
Direct Link  |  

Haibo, L., 2017. Experimental study on preparation of fly ash polystyrene new insulation building material. Chem. Eng. Trans., 59: 295-300.
CrossRef  |  Direct Link  |  

Hossain, K.M.A., S. Ahmed and M. Lachem, 2011. Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Constr. Build. Mater., 25: 1186-1195.
CrossRef  |  

Hwidi, M.H., M.L. Abduljabbar and A. Emad, 2018. Laser effect on optical and structural properties of CdTe: Al thin films prepared by pulsed laser deposition technique. J. Eng. Appl. Sci., 14: 2302-2308.
Direct Link  |  

Ismail, A.I.M., M.S. Elmaghraby and H.S. Mekky, 2013. Engineering properties, microstructure and strength development of lightweight concrete containing pumice aggregates. Geotech. Geol. Eng., 31: 1465-1476.
CrossRef  |  Direct Link  |  

Kim, H.K., J.H. Jeon and H.K. Lee, 2012. Workability and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr. Build. Mater., 29: 193-200.
CrossRef  |  Direct Link  |  

Kim1, M.O., H. Justnes and X. Qian, 2016. Application of structural lightweight aggregate concrete in floating marine concrete structures-A review. Proceedings of the 29th International KKHTCNN Symposium on Civil Engineering, December 3-5, 2016, Hong Kong, China, pp: 380-383.

Kismi, M., P. Poullain and P. Mounanga, 2012. Transient thermal response of lightweight cementitious composites made with polyurethane foam waste. Intl. J. Thermophys., 33: 1239-1258.
CrossRef  |  Direct Link  |  

Kockal, N.U. and T. Ozturan, 2011. Strength and elastic properties of structural lightweight concretes. Mater. Des., 32: 2396-2403.
CrossRef  |  Direct Link  |  

Koksal, F., O. Gencel, W. Brostow and H.H. Lobland, 2012. Effect of high temperature on mechanical and physical properties of lightweight cement based refractory including expanded vermiculite. Mater. Res. Innovations, 16: 7-13.
CrossRef  |  Direct Link  |  

Kurweti, A., R. Chandrakar and A. Rabbani, 2017. Comparative analysis on aac, clc and flyash concrete Blocks. Intl. J. Eng. Dev. Res., 5: 1924-1931.
Direct Link  |  

Madandoust, R., M.M. Ranjbar and S.Y. Mousavi, 2011. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Constr. Build. Mater., 25: 3721-3731.
CrossRef  |  Direct Link  |  

Ouellet, J., J.L. Martel, C. Ouellet-Plamondon and A. Carter, 2016. Predicting the compressive strength of ultralightweight concrete by an artificial neural network. Proceedings of the 5th International Conference on Materials Specialty, June 1-4, 2016, London, Canada, pp: 1-9.

Pelisser, F., A. Barcelos, D. Santos, M. Peterson and A.M. Bernardin, 2012. Lightweight concrete production with low Portland cement consumption. J. Cleaner Prod., 23: 68-74.
CrossRef  |  Direct Link  |  

Sariisik, A. and G. Sariisik, 2012. New production process for insulation blocks composed of EPS and lightweight concrete containing pumice aggregate. Mater. Struct., 45: 1345-1357.
CrossRef  |  Direct Link  |  

Schackow, A., C. Effting, M.V. Folgueras, S. Guths and G.A. Mendes, 2014. Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater., 57: 190-197.
CrossRef  |  Direct Link  |  

Sengul, O., S. Azizi, F. Karaosmanoglu and M.A. Tasdemir, 2011. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build., 43: 671-676.
CrossRef  |  Direct Link  |  

Shafigh, P., M.Z. Jumaat, H.B. Mahmud and N.A.A. Hamid, 2012. Lightweight concrete made from crushed oil palm shell: Tensile strength and effect of initial curing on compressive strength. Constr. Build. Mater., 27: 252-258.
CrossRef  |  Direct Link  |  

Shannag, M.J., 2011. Characteristics of lightweight concrete containing mineral admixtures. Constr. Build. Mater., 25: 658-662.
CrossRef  |  Direct Link  |  

Trtik, P., B. Munch, W.J. Weiss, A. Kaestner and I. Jerjen et al., 2011. Release of internal curing water from lightweight aggregates in cement paste investigated by neutron and X-ray tomography. Nucl. Instrum. Methods Phys. Res. Sect. A. Accelerators Spect. Detectors Associated Equip., 651: 244-249.
CrossRef  |  Direct Link  |  

Xu, Y., L. Jiang, J. Xu and Y. Li, 2012. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Constr. Build. Mater., 27: 32-38.
Direct Link  |  

Yoon, J., J. Kim, Y. Hwang and D. Shin, 2015. Lightweight concrete produced using a two-stage casting process. Mater., 8: 1384-1397.
CrossRef  |  PubMed  |  Direct Link  |  

Zhang, H., 2011. Building Materials in Civil Engineering. Elsevier, Amsterdam, Netherlands, ISBN: 9781845699567, Pages: 440.

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved