Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 6 SI
Page No. 9491 - 9503

Investigation of Antibacterial Activity and Cytotoxicity of ZnO Nanoparticles Synthesized by a Novel Biological Method

Authors : Nada K. Abbas, Israa Al-Ogaidi, Shurooq S. Mahmood and Hamid N. Obied

References

Ambika, S. and M. Sundrarajan, 2015. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol. B: Biol., 146: 52-57.
CrossRef  |  PubMed  |  Direct Link  |  

Ann, L.C., S. Mahmud, S.K.M. Bakhori, A. Sirelkhatim and D. Mohamad et al., 2014. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceramics Int., 40: 2993-3001.
CrossRef  |  Direct Link  |  

Azizi, S., M. Ahmad, M. Mahdavi and S. Abdolmohammadi, 2013. Preparation, characterization and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. BioResources, 8: 1841-1851.
CrossRef  |  Direct Link  |  

Bai, Z., X. Yan, X. Chen, K. Zhao, P. Lin and Y. Zhang, 2014. High sensitivity, fast speed and self-powered ultraviolet photodetectors based on ZnO micro/nanowire networks. Progress Nat. Sci.: Mater. Int., 24: 1-5.
CrossRef  |  Direct Link  |  

Bar, H., D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne and A. Misra, 2009. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. Physicochem. Eng. Aspects, 348: 212-216.
CrossRef  |  Direct Link  |  

Bhuyan, T., K. Mishra, M. Khanuja, R. Prasad and A. Varma, 2015. Biosynthesis of Zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process., 32: 55-61.
CrossRef  |  Direct Link  |  

Castro-Garza, J., H.B. Barrios-García, D.E. Cruz-Vega, S. Said-Fernández, P. Carranza-Rosales, C.A. Molina-Torres and L. Vera-Cabrera, 2007. Use of a colorimetric assay to measure differences in cytotoxicity of Mycobacterium tuberculosis strains. J. Med. Microbiol., 56: 733-737.
CrossRef  |  PubMed  |  Direct Link  |  

Chang, Y.N., M. Zhang, L. Xia, J. Zhang and G. Xing, 2012. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5: 2850-2871.
CrossRef  |  Direct Link  |  

Chatterjee, T., S. Chakraborti, P. Joshi, S.P. Singh, V. Gupta and P. Chakrabarti, 2010. The effect of Zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. FEBS. J., 277: 4184-4194.
CrossRef  |  PubMed  |  Direct Link  |  

Chitra, K. and G. Annadurai, 2013. Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. Int. Food Res. J., 20: 59-64.
Direct Link  |  

Cullity, B.D., 1967. Elements of X-Ray Diffraction. 3rd Edn., Addition-Wesley, Boston, Massachusetts, USA.

Delay, M., T. Dolt, A. Woellhaf, R. Sembritzki and F.H. Frimmel, 2011. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of Natural Organic Matter (NOM) and ionic strength. J. Chromatogr. A., 1218: 4206-4212.
CrossRef  |  PubMed  |  Direct Link  |  

Dobrucka, R. and J. Dlugaszewska, 2016. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci., 23: 517-523.
CrossRef  |  PubMed  |  Direct Link  |  

Elumalai, K., S. Velmurugan, S. Ravi, V. Kathiravan and S. Ashokkumar, 2015. Bio-fabrication of Zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Mater. Sci. Semicond. Process., 34: 365-372.
CrossRef  |  Direct Link  |  

Elumalai, K., S. Velmurugan, S. Ravi, V. Kathiravan and S. Ashokkumar, 2015. RETRACTED: Facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of Tamarindus indica (L.) and its biological evolution of antibacterial and antifungal activities. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 136: 1052-1057.
CrossRef  |  PubMed  |  Direct Link  |  

Elumalai, K., S. Velmurugan, S. Ravi, V. Kathiravan and S. Ashokkumar, 2015. RETRACTED: Green synthesis of Zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc., 143: 158-164.
CrossRef  |  PubMed  |  Direct Link  |  

Freshney, R.I., 1993. Culture of Animal Cells. 3rd Edn., Wiley, Hoboken, New Jersey, USA., ISBN: 9780471589662, Pages: 510.

Gopinath, S.M., T.B. Suneetha, V.D. Mruganka and S. Ananda, 2011. Evaluation of antibacterial activity of Tabernaemontana divaricata (L.) leaves against the causative organisms of bovine mastitis. Int. J. Res. Phytochem. Pharmacol., 1: 211-213.
Direct Link  |  

Guo, D.D., Q. Li, H.Y. Tang, J. Su and H.S. Bi, 2016. Zinc oxide nanoparticles inhibit expression of manganese superoxide dismutase via amplification of oxidative stress, in murine photoreceptor cells. Cell Proliferation, 49: 386-394.
CrossRef  |  PubMed  |  Direct Link  |  

Harborne, J.B., 1998. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd Edn., Chapman and Hall, London, UK., ISBN:9780412572609, Pages: 302.

Hong, R.Y., J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, 2009. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol., 189: 426-432.
CrossRef  |  Direct Link  |  

Hoshino, A., K. Fujioka, T. Oku, M. Suga and Y.F. Sasaki et al., 2004. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett., 4: 2163-2169.
CrossRef  |  Direct Link  |  

Ibrahim, H.M.M., 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 8: 265-275.
CrossRef  |  Direct Link  |  

Jayaseelan, C., A.A. Rahuman, A.V. Kirthi, S. Marimuthu and T. Santhoshkumar et al., 2012. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 90: 78-84.
CrossRef  |  PubMed  |  Direct Link  |  

Lakshmeesha, T.R., M.K. Sateesh, B.D. Prasad, S.C. Sharma, D. Kavyashree, M. Chandrasekhar and H. Nagabhushana, 2014. Reactivity of crystalline ZnO superstructures against fungi and bacterial pathogens: Synthesized using Nerium oleander leaf extract. Crystal Growth Design, 14: 4068-4079.
CrossRef  |  Direct Link  |  

Li, R., S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin and T. Sato, 2002. Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ionics, 151: 235-241.
CrossRef  |  Direct Link  |  

Mashrai, A., H. Khanam and R.N. Aljawfi, 2017. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arabian J. Chem., 10: S1530-S1536.
CrossRef  |  Direct Link  |  

Moosa, A.A., A.M. Ridha and M.H. Allawi, 2015. Green synthesis of silver nanoparticles using spent tea leaves extract with atomic force microscopy. Int. J. Curr. Eng. Technol., 5: 3233-3241.
Direct Link  |  

Nagarajan, S. and K.A. Kuppusamy, 2013. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J. Nanobiotechnol., Vol. 11. 10.1186/1477-3155-11-39

Padmavathy, N. and R. Vijayaraghavan, 2008. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater., Vol. 9, No. 3. 10.1088/1468-6996/9/3/035004

Pangnakorn, U., 2006. Valuable added the agricultural waste for farmers using in organic farming groups in Phitsanulok, Thailand. Proceedings of the Tropentag 2006 International Conference on Prosperity and Poverty in a Globalized World-Challenges for Agricultural Research, October, 11-13, 2006, University of Born, Bonn, Germany, pp: 275-278.

Parthibana, C. and N. Sundaramurthy, 2015. Biosynthesis, characterization of ZnO nanoparticles by using Pyrus pyrifolia leaf extract and their photocatalytic activity. Int. J. Innovative Res. Sci. Eng. Technol., 4: 9710-9718.
Direct Link  |  

Patil, S.K., S.S. Shinde and K.Y. Rajpure, 2013. Physical properties of spray deposited Ni-doped Zinc oxide thin films. Ceram. Int., 39: 3901-3907.
CrossRef  |  Direct Link  |  

Podrezova, L.V., S. Porro, V. Cauda, M. Fontana and G. Cicero, 2013. Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Applied Phys. A, 113: 623-632.
CrossRef  |  Direct Link  |  

Prasad, K. and A.K. Jha, 2009. ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci., 1: 129-135.
CrossRef  |  Direct Link  |  

Pratchayasakul, W., A. Pongchaidecha, N. Chattipakorn and S. Chattipakorn, 2008. Ethnobotany and ethnopharmacology of Tabernaemontana divaricata. Indian J. Med. Res., 127: 317-335.
PubMed  |  Direct Link  |  

Ramesh, M., M. Anbuvannan and G. Viruthagiri, 2015. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 136: 864-870.
CrossRef  |  PubMed  |  Direct Link  |  

Rodriguez, R., A. Jimenez, J. Fernandez-Bolanos, R. Guillen and A. Heredia, 2006. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol., 17: 3-15.
CrossRef  |  Direct Link  |  

Saadat, M., S.R. Mohammadi and M. Eskandari, 2013. Evaluation of antibacterial activity of ZnO and TiO2 nanoparticles on planktonic and biofilm cells of Pseudomonas aeruginosa. Biosci. Biotechnol. Res. Asia, 10: 629-635.
CrossRef  |  Direct Link  |  

Salam, H.A., R. Sivaraj and R. Venckatesh, 2014. Green synthesis and characterization of Zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater. Lett., 131: 16-18.
CrossRef  |  Direct Link  |  

Sangeetha, G., S. Rajeshwari and R. Venckatesh, 2011. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull., 46: 2560-2566.
CrossRef  |  Direct Link  |  

Sanpui, P., A. Murugadoss, P.V.D. Prasad, S.S. Ghosh and A. Chattopadhyay, 2008. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. Int. J. Food Microbiol., 124: 142-146.
CrossRef  |  Direct Link  |  

Sasikumar, R., P. Balasubramanian, P. Govindaraj and T. Krishnaveni, 2014. Preliminary studies on phytochemicals and antimicrobial activity of solvent extracts of Coriandrum sativum L. roots (Coriander). J. Pharmacogn. Phytochem., 2: 74-78.
Direct Link  |  

Shrivastava, S., T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash, 2007. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, Vol. 18, No. 22. 10.1088/0957-4484/18/22/225103

Singh, G., E.M. Joyce, J. Beddow and T.J. Mason, 2012. Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J. Microbiol. Biotechnol. Food Sci., 2: 106-120.
Direct Link  |  

Suresh, D., P.C. Nethravathi, H. Rajanaika, H. Nagabhushana and S.C. Sharma, 2015. Green synthesis of multifunctional Zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process., 31: 446-454.
CrossRef  |  Direct Link  |  

Suresh, D., R.M. Shobharani, P.C. Nethravathi, M.A.P. Kumar, H. Nagabhushana and S.C. Sharma, 2015. Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 141: 128-134.
CrossRef  |  PubMed  |  Direct Link  |  

Suwanboon, S., 2008. Structural and optical properties of nanocrystalline ZnO powder from sol-gel method. ScienceAsia, 34: 31-34.
CrossRef  |  Direct Link  |  

Suwanboon, S., P. Amornpitoksuk, A. Sukolrat and N. Muensit, 2013. Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceram. Int., 39: 2811-2819.
CrossRef  |  Direct Link  |  

Trease, G.E. and W.C. Evans, 1989. Pharmacognsy. 11th Edn., Macmillian Publishers, London, UK., pp: 35-38.

Umar, A., M.M. Rahman, M. Vaseem and Y.B. Hahn, 2009. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem. Commun., 11: 118-121.
CrossRef  |  Direct Link  |  

Van Beek, T.A., R. Verpoorte, A.B. Svendsen, A.J.M. Leeuwenberg and N.G. Bisset, 1984. Tabernaemontana L. (Apocynaceae): A review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J. Ethnopharmacol., 10: 1-156.
CrossRef  |  PubMed  |  Direct Link  |  

Vayssieres, L., 2004. On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol., 1: 1-41.
CrossRef  |  Direct Link  |  

Vimala, K., S. Shenbagamoorthy, P. Manickam, V. Srinivasan and K. Soundarapandian, 2014. Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem., 49: 160-172.
CrossRef  |  Direct Link  |  

Yuvakkumar, R., J. Suresh, A.J. Nathanael, M. Sundrarajan and S.I. Hong, 2014. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng.: C, 41: 17-27.
CrossRef  |  PubMed  |  Direct Link  |  

Zak, A.K., W.H. Majid, H.Z. Wang, R. Yousefi, A.M. Golsheikh and Z.F. Ren, 2013. Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem., 20: 395-400.
CrossRef  |  PubMed  |  Direct Link  |  

Zhou, H., H. Alves, D.M. Hofmann, W. Kriegseis, B.K. Meyer, G. Kaczmarczyk and A. Hoffmann, 2002. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Applied Phys. Lett., 80: 210-212.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved