Journal of Engineering and Applied Sciences

Year: 2020
Volume: 15
Issue: 6
Page No. 1451 - 1461

Calibration of Industrial Robot Kinematics Based on Results of Interpolating Error by Shape Function

Authors : Thuy Le Thi Thu, Khanh Duong Quoc and Long Pham Thanh

References

Abderrahim, M., A. Khamis, S. Garrido, L. Moreno and L.K. Huat, 2006. Accuracy and Calibration Issues of Industrial Manipulators. In: Industrial Robotics: Programming, Simulation and Applications, Huat, L.K. (Ed.). IntechOpen, London, UK., ISBN:3-86611-286-6, pp: 131-135.

Bai, Y. and D. Wang, 2003. Improve the position measurement accuracy using a dynamic on-line fuzzy interpolation technique. Proceedings of the 3rd International Workshop on Scientific use of Submarine Cables and Related Technologies, July 31-31, 2003, IEEE, Lugano, Switzerland, pp: 227-232.

Bai, Y. and D. Wang, 2003. On the comparison of interpolation techniques for robotic position compensation. Proceedings of the Joint 2003 IEEE International Conference on Systems, Man and Cybernetics SMC'03 and Theme-System Security and Assurance (Cat. No.03CH37483) Vol. 4, October 8, 2003, IEEE, Washington, DC., USA., pp: 3384-3389.

Bai, Y. and D. Wang, 2004. Improve the robot calibration accuracy using a dynamic online fuzzy error mapping system. IEEE. Trans. Syst. Man Cybern. Part B., 34: 1155-1160.
CrossRef  |  PubMed  |  Direct Link  |  

Bai, Y. and D. Wang, 2006. Fuzzy Logic for Robots Calibration-Using Fuzzy Interpolation Technique in Modeless Robot Calibration. In: Advanced Fuzzy Logic Technologies in Industrial Applications, Bai, Y., H. Zhuang and D. Wang (Eds.). Springer, London, UK., ISBN:978-1-84628-468-7, pp: 299-313.

Bai, Y. and D. Wang, 2016. On the comparison of an interval Type-2 Fuzzy interpolation system and other interpolation methods used in industrial modeless robotic calibrations. Proceedings of the 2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), June 27-28, 2016, IEEE, Budapest, Hungary, ISBN:978-1-4673-9760-5, pp: 1-6.

Bai, Y. and H. Zhuang, 2004. On the comparison of model-based and modeless robotic calibration based on the fuzzy interpolation Technique. Proceedings of the International IEEE Conference on Robotics, Automation and Mechatronics, December 1-3, 2004, IEEE, Singapore, pp: 892-897.

Bai, Y. and H. Zhuang, 2005. On the comparison of bilinear, cubic spline and fuzzy interpolation techniques for robotic position measurements. IEEE. Trans. Instrum. Meas., 54: 2281-2288.
CrossRef  |  Direct Link  |  

Bai, Y., J.C. Smith, H. Zhuang and D. Wang, 2008. Calibration of parallel machine tools using fuzzy interpolation method. Proceedings of the 2008 IEEE International Conference on Technologies for Practical Robot Applications, November 10-11, 2008, IEEE, Woburn, Massachusetts, USA., ISBN:978-1-4244-2791-8, pp: 56-61.

Borrmann, C. and J. Wollnack, 2014. Calibration of external linear robot axes using spline interpolation. Proceedings of the 2014 International Conference on Modelling, Identification & Control, December 3-5, 2014, IEEE, Melbourne, Australia, pp: 111-116.

Conrad, K.L., P.S. Shiakolas and T.C. Yih, 2000. Robotic calibration issues: Accuracy, repeatability and calibration. Proceedings of the 8th Mediterranean Conference on Control and Automation (MED2000), July 17-19, 2000, Rio, Patras, Greece, pp: 1-6.

Hayati, S., K. Tso and G. Roston, 1988. Robot geometry calibration. Proceedings of the 1988 IEEE International Conference on Robotics and Automation, April 24-29, 1988, IEEE, Philadelphia, Pennsylvania, USA., pp: 947-951.

Kamali, K., A. Joubair, I.A. Bonev and P. Bigras, 2016. Elasto-geometrical calibration of an industrial robot under multidirectional external loads using a laser tracker. Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), May 16-21, 2016, IEEE, Stockholm, Sweden, pp: 4320-4327.

Kong, L., G. Chen, Z. Zhang and H. Wang, 2018. Kinematic calibration and investigation of the influence of universal joint errors on accuracy improvement for a 3-DOF parallel manipulator. Rob. Comput. Integr. Manuf., 49: 388-397.
CrossRef  |  Direct Link  |  

Liu, Z., J. Xu, Q. Cheng, Y. Zhao, Y. Pei and C. Yang, 2018. Trajectory planning with minimum synthesis error for industrial robots using screw theory. Intl. J. Precis. Eng. Manuf., 19: 183-193.
CrossRef  |  Direct Link  |  

Ma, L., P. Bazzoli, P.M. Sammons, R.G. Landers and D.A. Bristow, 2018. Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Rob. Comput. Integr. Manuf., 50: 153-167.
CrossRef  |  Direct Link  |  

Mooring, B.W., Z.S. Roth and M.R. Driels, 1991. Fundamentals of Manipulator Calibration. Wiley, New York, USA., ISBN:9780471508649, Pages: 329.

Sun, T., Y. Zhai, Y. Song and J. Zhang, 2016. Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker. Rob. Comput. Integr. Manuf., 41: 78-91.
CrossRef  |  Direct Link  |  

Wang, D., Y. Bai and J. Zhao, 2012. Robot manipulator calibration using neural network and a camera-based measurement system. Trans. Inst. Meas. Control, 34: 105-121.
CrossRef  |  Direct Link  |  

Wang, S.M., Y.L. Liu and Y. Kang, 2002. An efficient error compensation system for CNC multi-axis machines. Intl. J. Mach. Tools Manuf., 42: 1235-1245.
CrossRef  |  Direct Link  |  

Weill, R. and B. Shani, 1991. Assessment of accuracy of robots in relation with geometrical tolerances in robot links. CIRP. Annals, 40: 395-399.
Direct Link  |  

Yu, C. and J. Xi, 2018. Simultaneous and on-line calibration of a robot-based inspecting system. Rob. Comput. Integr. Manuf., 49: 349-360.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved