Research Journal of Applied Sciences

Year: 2018
Volume: 13
Issue: 4
Page No. 245 - 251

Effect of Bacillus Species Rhizobacteria on Kabuli Chickpea Plants Growth under Pots and Field Conditions

Authors : A. Ait Kaki, S. Benhassine, A. Milet, M. Kara Ali, N. Moula and N. Kacem Chaouche

References

Abdel-Monaim, M.F., 2011. Integrated management of damping-off, root and/or stem rot diseases of chickpea and efficacy of the suggested formula. Notulae Scientia Biologicae, 3: 80-88.
Direct Link  |  

Agyeman, G.A., J. Loiland, R.S. Karow and S. Guy, 2004. Chickpea production guide. Master Thesis, Oregon State University, Corvallis, Oregon.

Ait-Kaki, A., N. Kacem-Chaouche, M. Ongena, M. Kara-Ali and L. Dehimat et al., 2014. In vitro and In vivo characterization of plant growth promoting Bacillus strains isolated from extreme environments of Eastern Algeria. Appl. Biochem. Biotechnol., 172: 1735-1746.
Direct Link  |  

Akpa, E., P. Jacques, B. Wathelet, M. Paquot and R. Fuchs et al., 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol., 91: 551-561.
Direct Link  |  

Ali, H.Z. and K. Nadarajah, 2013. Evaluating the efficacy of Trichoderma isolates and Bacillus subtilis as biological control agents against Rhizoctonia solani. Res. J. Appl. Sci., 8: 72-81.

Anonymous, 2017. Global bacterial biopesticides market report 2014-2019: Bacillus Thuringiensis, Bacillus subtilis, Pseudomonas fluorescens breakdown of the $1.4 billion industry. PR Newswire, New York, USA.

Atkinson, N.J. and P.E. Urwin, 2012. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot., 63: 3523-3543.
CrossRef  |  PubMed  |  Direct Link  |  

Beneduzi, A., D. Peres, P. Beschoren da Costa, M.H.B. Zanettini and L.M.P. Passaglia, 2008. Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in Southern Brazil. Res. Microbiol., 159: 244-250.
CrossRef  |  

Bonmatin, J.M., O. Laprevote and F. Peypoux, 2003. Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High Throughput Screen., 6: 541-556.
CrossRef  |  

Calvo‐Garrido, C., I. Vinas, J. Usall, M. Rodriguez‐Romera and M.C. Ramos et al., 2014. Survival of the biological control agent Candida sake CPA‐1 on grapes under the influence of abiotic factors. J. Appl. Microbiol., 117: 800-811.
CrossRef  |  Direct Link  |  

Canci, H. and C. Toker, 2009. Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet. Resour. Crop Evol., 56: 1-6.
Direct Link  |  

Driks, A., 2002. Overview: Development in bacteria; Spore formation in Bacillus subtilis. Cell. Mol. Life Sci., 59: 389-391.
Direct Link  |  

El‐Bendary, M.A., 2006. Bacillus thuringiensis and MBacillus sphaericus biopesticides production. J. Basic Microbiol., 46: 158-170.
CrossRef  |  Direct Link  |  

Hammond-Kosack, K.E. and J.D.G. Jones, 2000. Responses to Plant Pathogens. In: Biochemistry and Molecular Biology of Plants, Buchanan, B.B., W. Gruissem and R.L. Jones (Eds.). American Society of Plant Physiology, Rockville, Maryland, USA., pp: 1102-1156.

Inam-Ul-Haq, M., M. Tahir, R. Hayat, R. Khalid and M. Ashfaq, 2015. Bioefficacy of rhizobacterial isolates against root infecting fungal pathogens of chickpea (Cicer arietinum L.). J. Plant Pathol. Microbiol. S., 3: 1-8.

Intana, W., P. Yenjit, T. Suwanno, S. Sattasakulchai and M. Suwanno et al., 2011. Efficacy of antifungal metabolites of Bacillus spp. for controlling tomato damping-off caused by Pythium aphanidermatum. Walailak J. Sci. Technol., 5: 29-38.
Direct Link  |  

Jacques, P., C. Hbid, J. Destain, H. Razafindralambo and M. Paquot et al., 1999. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl. Biochem. Biotechnol., 77: 223-233.
Direct Link  |  

Kaki, A.A., N.K. Chaouche, L. Dehimat, A. Milet and M. Youcef-Ali et al., 2013. Biocontrol and plant growth promotion characterization of Bacillus species isolated from Calendula officinalis rhizosphere. Indian J. Microbiol., 53: 447-452.
Direct Link  |  

Karimi, K., J. Amini, B. Harighi and B. Bahramnejad, 2012. Evaluation of biocontrol potential of pseudomonas and bacillus spp. against fusarium wilt of chickpea. Aust. J. Crop Sci., 6: 695-703.

Landa, B.B., J.A. Navas-Cortes and R.M. Jimenez-Diaz, 2004. Integrated management of Fusarium wilt of chickpea with sowing date, host resistance and biological control. Phytopathol., 94: 946-960.
Direct Link  |  

Latour, X., T. Corberand, G. Laguerre, F. Allard and P. Lemanceau, 1996. The composition of fluorescent pseudomonad population associated with roots is influenced by plant and soil type. Applied Environ. Microbiol., 62: 2449-2456.
Direct Link  |  

Manikandan, R., D. Saravanakumar, L. Rajendran, T. Raguchander and R. Samiyappan, 2010. Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol. Control, 54: 83-89.
CrossRef  |  Direct Link  |  

Martinez-Mendoza, E.K. and H.G. Mena-Violante, 2012. Effects of Bacillus subtilis extracts on weed seed germination of Sorghum halepense and Amaranthus hybridus. Afr. J. Microbiol. Res., 6: 1887-1892.
Direct Link  |  

Mbarek, K.B., 2011. Behavior of chickpea (Cicerarietinum L.) of the Kabuli type with respect to water stress and identification of drought tolerant genotypes. Ph.D Thesis, University of Sousse, Sousse, Tunisia.

Monteiro, S.M., J.J. Clemente, A.O. Henriques, R.J. Gomes, M.J. Carrondo and A.E. Cunha, 2005. A procedure for high-yield spore production by Bacillus subtilis. Biotechnol. Prog., 21: 1026-1031.
CrossRef  |  

Monteiro, S.M.S., J.J. Clemente, M.J.T. Carrondo and A.E. Cunha, 2014. Enhanced spore production of Bacillus subtilis grown in a chemically defined medium. Adv. Microbiol., 4: 444-454.
Direct Link  |  

Nandakumar, R., S. Babu, R. Viswanathan, J. Sheela, T. Raguchander and R. Samiyappan, 2001. A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol, 46: 493-510.
CrossRef  |  Direct Link  |  

Nayar, J.K., J.W. Knight, A.R.S.H.A.D. Ali, D.B. Carlson and P.D. O'Bryan, 1999. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar israelensis against two Florida mosquito species. J. Am. Mosq. Control Assoc., 15: 32-42.
Direct Link  |  

Nikam P.S., G.P. Jagtap and P.L. Sontakke, 2007. Management of chickpea wilt caused by Fusarium oxysporium f. sp. ciceri. Afr. J. Agric. Res., 2: 692-697.
Direct Link  |  

Nithya, V. and P.M. Halami, 2012. Novel whole-cell reporter assay for stress-based classification of antibacterial compounds produced by locally isolated Bacillus spp. Indian J. Microbiol., 52: 180-184.
Direct Link  |  

Ongena, M. and P. Jacques, 2008. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol., 16: 115-125.
CrossRef  |  Direct Link  |  

Schmidt, C.S., F. Agostini, C. Leifert, K. Killham and C.E. Mullins, 2004. Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathol., 94: 351-363.
Direct Link  |  

Toker, C., H. Canci and T. Yildirim, 2007. Evaluation of perennial wild Cicer species for drought resistance. Genet. Resour. Crop Evol., 54: 1781-1786.
Direct Link  |  

Toure, Y., M. Ongena, P. Jacques, A. Guiro and P. Thonart, 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Applied Microbiol., 96: 1151-1160.
Direct Link  |  

Wei, F., X. Hu and X. Xu, 2016. Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Sci. Rep., 6: 22611-22611.

Yadav, S., R. Kaushik, A.K. Saxena and D.K. Arora, 2011. Diversity and phylogeny of plant growth‐promoting bacilli from moderately acidic soil. J. Basic Microbiol., 51: 98-106.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved