Research Journal of Biological Sciences

Year: 2009
Volume: 4
Issue: 11
Page No. 1156 - 1161

Antibacterial Activity of Silver/Clay/Chitosan Bionanocomposites

Authors : Mansor Bin Ahmad, Kamyar Shameli, Majid Darroudi, Wan Md Zin Wan Yunus, Nor Azowa Ibrahim, Azizah Abdul Hamid and Mohsen Zargar

References

Abdullah, A.H., A.A. Hamid, K. Shameli, M. Darroudi, M.B. Ahmad, M. Zargar and N.A. Ibrahim, 2009. Antibacterial effect of synthesized silver/montmorillonite nanocomposites by UV-Irradiation method. Res. Biol. Sci., 4: 1056-1060.
CrossRef  |  Direct Link  |  

Bhattacharya, D. and R.K. Gupta, 2005. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol., 25: 199-204.
CrossRef  |  PubMed  |  

Bohren, C.F. and D.R. Huffman, 1998. Absorption and Scattering of Light by Small Particles. Wiley-Interscience, New York, pp: 544.

Bosetti, M., A. Masse, E. Tobin and M. Cannas, 2002. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 23: 887-892.
CrossRef  |  PubMed  |  

Cho, K.H., J.E. Park, T. Osaka and S.G. Park, 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta, 51: 956-960.
CrossRef  |  

Gauger, A., M. Mempel, A. Schekatz, T. Schafer, J. Ring and D. Abeck, 2003. Silver-coated textiles reduce Staphylococcus aureus colonization in patients with atopic eczema. Dermatology, 207: 15-21.
CrossRef  |  PubMed  |  

Hamid, A.A., K. Shameli, M. Darroudi, M.B. Ahmad, M. Zargar, N.A. Ibrahim and W.Z.W. Yunus, 2009. Synthesis and antibacterial activity of silver/montmorillonite nanocomposites. Res. Biol. Sci., 4: 1032-1036.
CrossRef  |  Direct Link  |  

Huang, H. and Y. Yang, 2008. Preparation of silver nanoparticles in inorganic clay suspensions. Comp. Sci. Technol., 68: 2948-2953.
CrossRef  |  

Kozak, M. and L.J. Domka, 2004. Adsorption of the quaternary ammonium salts on montmorillonite. J. Phys. Chem. Solids, 65: 441-445.
CrossRef  |  Direct Link  |  

Liu, Z., H. Wang, H. Li and X. Wang, 1998. Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation. Applied Phys. Lett., 72: 1823-1825.
Direct Link  |  

Lok, C.N., C.M. Ho, R. Chen, Q.Y. He and W.Y. Yu et al., 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 5: 916-924.
CrossRef  |  PubMed  |  

Morones, J.R., J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez and M.J. Yacaman, 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16: 2346-2353.
CrossRef  |  Direct Link  |  

Pal, S., Y.K. Tak and J.M. Song, 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 73: 1712-1720.
CrossRef  |  PubMed  |  Direct Link  |  

Patakfalvi, R., A. Oszko and I. Dekany, 2003. Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids Surfaces A: Physicochem. Eng. Aspects, 220: 45-54.
Direct Link  |  

Prasad, V., C.D. Souza, D. Yadav, A.J. Shaikh and N. Vigneshwaran, 2006. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy, 65: 173-178.
CrossRef  |  

Temgire, M.K. and S.S. Joshi, 2004. Optical and structural studies of silver nanoparticles. Radiat. Phys. Chem., 71: 1039-1044.
CrossRef  |  

Ulkur, E., O. Oncul, H. Karagoz, E. Yeniz and B. Celikoz, 2005. Comparison of silver-coated dressing (Acticoat�), chlorhexidine acetate 0.5% (Bactigrass) and fusidic acid 2% (Fucidin) for topical antibacterial effect in methicillin-resistant staphylococci-contaminated, full-skin thickness rat burn wounds. Burns, 31: 874-877.
CrossRef  |  PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved