Asian Journal of Information Technology

Year: 2017
Volume: 16
Issue: 9
Page No. 727 - 733

A Hybrid Neuro-Genetic System for Iris Recognition

Authors : D. Elantamilan, V. SaiShanmuga Raja and S.P. Rajagopalan

References

Anupam, T. and J. Vinay, 2015. Indian Iris image segmentation using nelder-mead simplexnb method. Proceedings of the National Conference on Knowledge, Innovation in Technology and Engineering NCKITE, July 10-11, 2015, Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India, pp: 5-12.

Daugman, J., 2004. How iris recognition works. IEEE Trans. Circuits Syst. Video Technol., 14: 21-30.
CrossRef  |  Direct Link  |  

Daugman, J.G., 1993. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell., 15: 1148-1161.
CrossRef  |  Direct Link  |  

Demea, S., 2005. Correlations between iris aspects and endocrine pathology. Ph.D Thesis, Sibiu Medical, Romania, Balkans.

Devi, K., P. Gupta, D. Grover and A. Dhindsa, 2016. An effective texture feature extraction approach for iris recognition system. Proceedings of the International Conference on Advances in Computing, Communication and Automation (ICACCA), September 30- October 1, 2016, IEEE, Chandigarh, India, ISBN:978-1-5090-3481-9, pp: 1-5.

Fallahnezhad, M., M.H. Moradi and S. Zaferanlouei, 2011. A hybrid higher order neural classifier for handling classification problems. Expert Syst. Appl., 38: 386-393.
Direct Link  |  

Ganesan, T., P. Vasant and I. Elamvazuthi, 2011. Optimization of nonlinear geological structure mapping using hybrid neuro-genetic techniques. Math. Comput. Model., 54: 2913-2922.
CrossRef  |  

Kasar, M.M., D. Bhattacharyya and T.H. Kim, 2016. Face recognition using neural network: A review. Intl. J. Secur. Appl., 10: 81-100.
Direct Link  |  

Marshak, D.W., J. Oakes, P.H. Hsieh, A.Z. Chuang and L.J. Cleary, 2015. Outcomes of a rotational dissection system in gross anatomy. Anat. Sci. Educ., 8: 438-444.
CrossRef  |  Direct Link  |  

Melin, P. and O. Castillo, 2007. Hybrid intelligent system for pattern recognition. J. Autom. Mob. Rob. Intell. Syst., 1: 13-19.
Direct Link  |  

Melin, P., V. Herrera, D. Romero, F. Valdez and O. Castillo, 2012. Genetic optimization of neural networks for person recognition based on the Iris. Telecommun. Comput. Electron. Control, 10: 309-320.
Direct Link  |  

Mukherjee, S. and B. Chanda, 2011. A robust human Iris verification using a novel combination of features. Proceedings of the 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), December 15-17, 2011, IEEE, Kolkata, India, ISBN:978-1-4577-2102-1, pp: 162-166.

O’Connor, P., D. Neil, S.C. Liu, T. Delbruck and M. Pfeiffer, 2015. Real-time classification and sensor fusion with a spiking deep belief network. Neuromorphic Eng. Syst. Appl., 61: 1-10.
CrossRef  |  PubMed  |  

Raja, V.S. and S.P. Rajagopalan, 2013. IRIS recognition system using neural network and genetic algorithm. Intl. J. Comput. Appl., 68: 49-53.
Direct Link  |  

Sibai, F.N., H.I. Hosani, R.M. Naqbi, S. Dhanhani and S. Shehhi, 2011. Iris recognition using artificial neural networks. Expert Syst. Appl., 38: 5940-5946.
Direct Link  |  

Tian, Q., Z. Liu, L. Li and Z. Sun, 2006. A practical iris recognition algorithm. Proceedings of the IEEE International Conference on Robotics and Biomimetics ROBIO'06, December 17-20, 2006, IEEE, Shanxi, China, ISBN:1-4244-0570-X, pp: 392-395.

Umer, S., B.C. Dhara and B. Chanda, 2015. Iris recognition using multiscale morphologic features. Pattern Recognit. Lett., 65: 67-74.
Direct Link  |  

You, Z., J. Zhou, Y. Wang, Z. Sun and S. Shan et al., 2016. Biometric Recognition. Vol. 9967, Springer, Chengdu, China, ISBN:978-3-319-46653-8, Pages: 775.

Zeng, J. and Z.Q. Liu, 2015. Type-2 Fuzzy Sets for Pattern Recognition. In: Type-2 Fuzzy Graphical Models for Pattern Recognition, Zeng, J. and L. Zhi-Qiang (Eds.). Springer, Berlin,Germany, ISBN:978-3-662-44689-8, pp: 17-44.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved