Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 20
Page No. 5147 - 5159

Variable Density Approach for Modeling of Transcritical and Supercritical Jets

Authors : Eduardo Antunes, Andre Silva and Jorge Barata

References

Antunes, E., A. Silva and J. Barata, 2011. Evaluation of numerical variable density approach to cryogenic jets. Proceedings of the 50th AIAA Meeting on Aerospace Sciences including the New Horizons Forum and Aerospace Exposition, January 9-12, 2012, A.I.A.A., Nashville, Tennessee, pp: 1-14.

Barata, M.J.M. and R.A.R. Silva, 2003. Numerical study of cryogenic jets under supercritical conditions. J. Propul. Power, 19: 142-147.
Direct Link  |  

Bellan, J., 2000. Supercritical (and subcritical) fluid behavior and modeling: Drops, streams, shear and mixing layers, jets and sprays. Prog. Energy combust. Sci., 26: 329-366.
Direct Link  |  

Chehroudi, B., D. Talley and E. Coy, 2002. Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures. Phys. Fluids, 14: 850-861.
Direct Link  |  

Chehroudi, B., R. Cohn and D. Talley, 2002. Cryogenic shear layers: Experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions. Intl. J. Heat Fluid Flow, 23: 554-563.
Direct Link  |  

Jarczyk, M.M. and M. Pfitzner, 2012. Large eddy simulation of supercritical nitrogen jets. Proceedings of the 50th AIAA Meeting on Aerospace Sciences including the New Horizons Forum and Aerospace Exposition, January 9-12, 2012, A.I.A.A., Nashville, Tennessee, pp: 1-13.

Kim, T., Y. Kim and S.K. Kim, 2011. Numerical study of cryogenic liquid nitrogen jets at supercritical pressures. J. Supercrit. Fluids, 56: 152-163.
Direct Link  |  

Lacaze, G. and J.C. Oefelein, 2012. A non-premixed combustion model based on flame structure analysis at supercritical pressures. Combust. Flame, 159: 2087-2103.
Direct Link  |  

Martinez, M.S., F.A.C. Sanchez, J.M.R. Avila, A.G. Munoz and S.M. Aceves, 2008. Liquid penetration length in direct diesel fuel injection. Appl. Therm. Eng., 28: 1756-1762.
Direct Link  |  

Mayer, W., J. Telaar, R. Branam, G. Schneider and J. Hussong, 2003. Raman measurements of cryogenic injection at supercritical pressure. Heat Mass Transfer, 39: 709-719.
CrossRef  |  Direct Link  |  

Mayer, W.O.H., A. Schik, A.H. Vielle, C.B. Chauveau and K.I.G. Ograve et al., 1998. Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions. J. Propul. Power, 14: 835-842.
Direct Link  |  

Newman, J.A. and T.A. Brzustowski, 1971. Behavior of a liquid jet near the thermodynamic critical region. AIAA. J., 9: 1595-1602.
Direct Link  |  

Oschwald, M. and A. Schik, 1999. Supercritical nitrogen free jet investigated by spontaneous Raman scattering. Exp. Fluids, 27: 497-506.
CrossRef  |  Direct Link  |  

Oschwald, M., 2002. Spreading angle and centerline variation of density of supercritical nitrogen jets. Atomization Sprays, 12: 91-106.
CrossRef  |  Direct Link  |  

Oschwald, M., J.J. Smith, R. Branam, J. Hussong and A. Schik et al., 2006. Injection of fluids into supercritical environments. Combust. Sci. Technol., 178: 49-100.
Direct Link  |  

Papamoschou, D. and A. Roshko, 1988. The compressible turbulent shear layer: An experimental study. J. Fluid Mech., 197: 453-477.
Direct Link  |  

Park, T.S., 2012. LES and RANS simulations of cryogenic liquid nitrogen jets. J. Supercrit. Fluids, 72: 232-247.
Direct Link  |  

Petit, X., G. Ribert, G. Lartigue and P. Domingo, 2013. Large-eddy simulation of supercritical fluid injection. J. Supercrit. Fluids, 84: 61-73.
Direct Link  |  

Sanders, J.P.H., B. Sarh and I. Gokalp, 1997. Variable density effects in axisymmetric isothermal turbulent jets: A comparison between a first-and a second-order turbulence model. Intl. J. Heat Mass Transfer, 40: 823-842.
Direct Link  |  

Schmitt, T., J. Rodriguez, I.A. Leyva and S. Candel, 2012. Experiments and numerical simulation of mixing under supercritical conditions. Phys. Fluids, Vol. 24,

Schmitt, T., L. Selle, B. Cuenot and T. Poinsot, 2009. Large-eddy simulation of transcritical flows. C.R. Mec., 337: 528-538.
Direct Link  |  

Seebald, P. and P.E. Sojka, 2011. Supercritical and Transcritical Injection. In: Handbook of Atomization and Sprays, Nasser, A. (Ed.). Springer, New York, USA., ISBN:978-1-4419-7263-7, pp: 255-261.

Segal, C. and S.A. Polikhov, 2008. Subcritical to supercritical mixing. Phys. Fluids, 20: 1-7.
Direct Link  |  

Shinjo, J. and A. Umemura, 2011. Surface instability and primary atomization characteristics of straight liquid jet sprays. Intl. J. Multiphase Flow, 37: 1294-1304.
Direct Link  |  

Sierra, P.J., C.P. Santiago and F. Castro, 2012. Numerical modelling of supercritical submerged water jets in a subcritical co-flow. J. Supercrit. Fluids, 65: 45-53.
Direct Link  |  

Sierra, P.J., S.M.T. Parra, S.J. Garcia, F. Castro and M.J. Cocero, 2009. Numerical analysis of high-pressure fluid jets: Application to RTD prediction in supercritical reactors. J. Supercrit. Fluids, 49: 249-255.
Direct Link  |  

Sutton, G.P. and O. Biblarz, 2010. Rocket Propulsion Elements. 8th Edn., John Wiley & Sons, Hoboken, New Jersey, ISBN:978-0-470-08024-5,.

Zhou, L., M.Z. Xie, M. Jia and J.R. Shi, 2011. Large eddy simulation of fuel injection and mixing process in a diesel engine. Acta Mech. Sin., 27: 519-530.
CrossRef  |  Direct Link  |  

Zong, N. and V.I.G.O.R. Yang, 2006. Cryogenic fluid jets and mixing layers in transcritical and supercritical environments. Combust. Sci. Technol., 178: 193-227.
Direct Link  |  

Zong, N., H. Meng, S.Y. Hsieh and V. Yang, 2004. A numerical study of cryogenic fluid injection and mixing under supercritical conditions. Phys. Fluids, 16: 4248-4261.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved