Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 6
Page No. 1755 - 1759

Activated Carbon via. Pyropysis of Tea Industry Waste Biochar with KOH Activation: Preparation and Characterization

Authors : Thuan Van Tran, Bich Ngoc Hoang, Hien Thien Tran, Nhan Phu Thuong Nguyen, Van Thi Thanh Ho, Nguyen Dai Hai, Vu Dai Cao, Trinh Duy Nguyen and Long Giang Bach

References

Bach, L.G., T. Van Tran, T.D. Nguyen, T. Van Pham and S.T. Do, 2018. Enhanced adsorption of methylene blue onto graphene oxide-doped XFe2O4 (X= Co, Mn, Ni) nanocomposites: Kinetic, isothermal, thermodynamic and recyclability studies. Res. Chem. Intermed., 44: 1661-1687.
CrossRef  |  Direct Link  |  

Farahania, M., S.R.S. Abdullaha, S. Hosseinib, S. Shojaeipourc and M. Kashisaza, 2011. Adsorption-based cationic dyes using the carbon active sugarcane bagasse. Proc. Environ. Sci., 10: 203-208.
CrossRef  |  

Ferrera-Lorenzo, N., E. Fuente, I. Suarez-Ruiz and B. Ruiz, 2014. KOH activated carbon from conventional and microwave heating system of a macroalgae waste from the Agar-Agar industry. Fuel Process. Technol., 121: 25-31.
CrossRef  |  Direct Link  |  

Gao, L., H. Lu, H. Lin, X. Sun and J. Xu et al., 2014. KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber. Chem. Res. Chin. Univ., 30: 441-446.
CrossRef  |  Direct Link  |  

Giang, B.L., N.D. Trinh, P. Van Thinh and T. Thuan Van, 2017. Optimization of the fabrication of banana peel-derived activated carbon and application for Cu2+ removal. J. Mater. Sci. Surf. Eng., 5: 622-626.
Direct Link  |  

Gundogdu, A., C. Duran, H.B. Senturk, M. Soylak and D. Ozdes et al., 2012. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: Equilibrium, Kinetic and thermodynamic study. J. Chem. Eng. Data, 57: 2733-2743.
CrossRef  |  Direct Link  |  

Guo, J.X., H.D. Luo, S. Shu, X.L. Liu and J.J. Li et al., 2017. Regeneration of Fe modified activated carbon treated by HNO3 for flue gas desulfurization. Energy Fuels, 32: 765-776.
CrossRef  |  Direct Link  |  

Juarez-Galan, J.M., A. Silvestre-Albero, J. Silvestre-Albero and F. Rodriguez-Reinoso, 2009. Synthesis of activated carbon with highly developed mesoporosity. Microporous Mesoporous Mater., 117: 519-521.
CrossRef  |  Direct Link  |  

Liu, H., J. Zhang, H.H. Ngo, W. Guo and H. Wu et al., 2015. Effect on physical and chemical characteristics of activated carbon on adsorption of trimethoprim: Mechanisms study. RSC. Adv., 5: 85187-85195.
CrossRef  |  Direct Link  |  

Ncibi, M.C., R. Ranguin, M.J. Pintor, V. Jeanne-Rose and M. Sillanpaa et al., 2014. Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. J. Anal. Appl. Pyrolysis, 109: 205-214.
CrossRef  |  Direct Link  |  

Nor, N.M., L.C. Lau, K.T. Lee and A.R. Mohamed, 2013. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control-A review. J. Environ. Chem. Eng., 1: 658-666.
CrossRef  |  Direct Link  |  

Reffas, A., V. Bernardet, B. David, L. Reinert and M.B. Lehocine et al., 2010. Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J. Hazard. Mater., 175: 779-788.
CrossRef  |  PubMed  |  Direct Link  |  

Srenscek-Nazzal, J., W. Kaminska, B. Michalkiewicz and Z.C. Koren, 2013. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crops Prod., 47: 153-159.
CrossRef  |  Direct Link  |  

Tran, V.T., D.T. Nguyen, V.T.T. Ho, P.Q.H. Hoang and P.Q. Bui et al., 2017. Efficient removal of Ni2+ ions from aqueous solution using activated carbons fabricated from rice straw and tea waste. J. Mater., 8: 426-437.
Direct Link  |  

Uysal, T., G. Duman, Y. Onal, I. Yasa and J. Yanik, 2014. Production of activated carbon and fungicidal oil from peach stone by two-stage process. J. Anal. Appl. Pyrolysis, 108: 47-55.
CrossRef  |  Direct Link  |  

Van Thuan, T., B.T.P. Quynh, T.D. Nguyen and L.G. Bach, 2017. Response surface methodology approach for optimization of Cu2+, Ni2+ and Pb2+ adsorption using KOH-activated carbon from banana peel. Surf. Interfaces, 6: 209-217.
CrossRef  |  Direct Link  |  

Van Tran, T., Q.T.P. Bui, T.D. Nguyen, V.T.T. Ho and L.G. Bach, 2017. Application of response surface methodology to optimize the fabrication of ZnCl2-activated carbon from sugarcane bagasse for the removal of Cu2+. Water Sci. Technol., 75: 2047-2055.
CrossRef  |  PubMed  |  Direct Link  |  

Wang, J. and S. Kaskel, 2012. KOH activation of carbon-based materials for energy storage. J. Mater. Chem., 22: 23710 -23725.
CrossRef  |  Direct Link  |  

Xu, J., L. Chen, H. Qu, Y. Jiao and J. Xie et al., 2014. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surf. Sci., 320: 674-680.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved