Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 9
Page No. 2813 - 2821

Exergy Analysis of Solar LiBr-H2O Absorption System for Cooling a Building

Authors : AbdulrahmanTh. Mohammad

References

Avanessian, T. and M. Ameri, 2014. Energy, exergy and economic analysis of single and double effect LiBr–H2O absorption chillers. Energy Build., 73: 26-36.
CrossRef  |  Direct Link  |  

Bejan, A., 2006. Advanced Engineering Thermodynamics. 1st Edn., John Wiley and Sons, New York, ISBN: 978-0-471-67763-5.

Bejan, A., G. Tsatsaronis and M. Moran, 1996. Thermal Design and Optimization. John Wiley and Sons, New York, USA.

Chua, H.T., H.K. Toh and K.C. Ng, 2002. Thermodynamic modeling of an Ammonia-water absorption chiller. Intl. J. Refrig., 25: 896-906.
CrossRef  |  Direct Link  |  

Ezzine, N.B., M. Barhoumi, K. Mejbri, S. Chemkhi and A. Bellagi, 2004. Solar cooling with the absorption principle: First and second law analysis of an Ammonia-water Double-generator absorption chiller. Desalin., 168: 137-144.
CrossRef  |  Direct Link  |  

Fartaj, S.A., 2004. Comparison of energy, exergy and entropy balance methods for analysing Double‐stage absorption heat transformer cycles. Intl. J. Energy Res., 28: 1219-1230.
Direct Link  |  

Gomri, R. and R. Hakimi, 2008. Second law analysis of double effect vapour absorption cooler system. Energy Convers. Manage., 49: 3343-3348.
Direct Link  |  

Hasan, A.A., D.Y. Goswami and S. Vijayaraghavan, 2002. First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source. Solar Energy, 73: 385-393.
Direct Link  |  

Iranmanesh, A. and M.A. Mehrabian, 2013. Dynamic simulation of a Single-effect LiBr–H2O absorption refrigeration cycle considering the effects of thermal masses. Energy Build., 60: 47-59.
CrossRef  |  Direct Link  |  

Khaliq, A. and R. Kumar, 2008. Exergy analysis of double effect vapor absorption refrigeration system. Intl. J. Energy Res., 32: 161-174.
Direct Link  |  

Lee, S.F. and S.A. Sherif, 2001. Thermodynamic analysis of a lithium Bromide-water absorption system for cooling and heating applications. Intl. J. Energy Res., 25: 1019-1031.
CrossRef  |  Direct Link  |  

Martinez, H. and W. Rivera, 2009. Energy and exergy analysis of a double absorption heat transformer operating with Water-lithium bromide. Intl. J. Energy Res., 33: 662-674.
CrossRef  |  Direct Link  |  

Onan, C., D.B. Ozkan and S. Erdem, 2010. Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications. Energy, 35: 5277-5285.
CrossRef  |  Direct Link  |  

Patek, J. and J. Klomfar, 2006. A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range. Intl. J. Refrig., 29: 566-578.
CrossRef  |  Direct Link  |  

Ravikumar, T.S., L. Suganthi and A.A. Samuel, 1998. Exergy analysis of solar assisted double effect absorption refrigeration system. Renewable Energy, 14: 55-59.
CrossRef  |  Direct Link  |  

Sencan, A., K.A. Yakut and S.A. Kalogirou, 2005. Exergy analysis of lithium bromide/water absorption systems. Renewable Energy, 30: 645-657.
CrossRef  |  Direct Link  |  

Sozen, A., 2001. Effect of heat exchangers on performance of absorption refrigeration systems. Energy Convers. Manage., 42: 1699-1716.
Direct Link  |  

Talbi, M.M. and B. Agnew, 2000. Exergy analysis: An absorption refrigerator using lithium bromide and water as working fluids. Applied Therm. Eng., 20: 619-630.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved