Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 9
Page No. 2891 - 2897

A Review on Large-Scale Fire Testing of Concrete Tunnel Lining

Authors : Husen Alhawat, Roszilah Hamid, Shahrizan Bahroom and Mohamed H. Mussa

References

Arioz, O., 2007. Effects of elevated temperatures on properties of concrete. Fire Saf. J., 42: 516-522.
CrossRef  |  Direct Link  |  

Bezgin, N.O., 2015. An experimental evaluation to determine the required thickness of passive fire protection layer for high strength concrete tunnel segments. Constr. Build. Mater., 95: 279-286.
CrossRef  |  Direct Link  |  

Caner, A. and A. Boncu, 2009. Structural fire safety of circular concrete railroad tunnel linings. J. Struct. Eng., 135: 1081-1092.
CrossRef  |  Direct Link  |  

Choi, S.W., J. Lee and S.H. Chang, 2013. A holistic numerical approach to simulating the thermal and mechanical behaviour of a tunnel lining subject to fire. Tunnelling Underground Space Technol., 35: 122-134.
CrossRef  |  Direct Link  |  

Demirel, B. and O. Kelestemur, 2010. Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Saf. J., 45: 385-391.
CrossRef  |  

Du, S., Y. Zhang, Q. Sun, W. Gong and J. Geng et al., 2018. Experimental study on color change and compression strength of concrete tunnel lining in a fire. Tunnelling Underground Space Technol., 71: 106-114.
Direct Link  |  

Ibrahim, R.K., R. Hamid and M.R. Taha, 2012. Fire resistance of high-volume fly ash mortars with nanosilica addition. Constr. Build. Mater., 36: 779-786.
CrossRef  |  Direct Link  |  

Ingason, H., A. Lonnermark and Y.Z. Li, 2012. Model of ventilation flows during large tunnel fires. Tunnelling Underground Space Technol., 30: 64-73.
CrossRef  |  Direct Link  |  

Ingason, H., Y.Z. Li and A. Lonnermark, 2015. Runehamar tunnel fire tests. Fire Saf. J., 71: 134-149.
Direct Link  |  

Ingason, H., Y.Z. Li, G. Appel, U. Lundstrom and C. Becker, 2016. Large scale tunnel fire tests with large droplet water-based fixed fire fighting system. Fire Technol., 52: 1539-1558.
CrossRef  |  Direct Link  |  

Krzemien, K. and I. Hager, 2015. Assessment of concrete susceptibility to fire spalling: A report on the state-of-the-art in testing procedures. Procedia Eng., 108: 285-292.
CrossRef  |  Direct Link  |  

Li, Y.Z. and H. Ingason, 2012. The maximum ceiling gas temperature in a large tunnel fire. Fire Saf. J., 48: 38-48.
CrossRef  |  Direct Link  |  

Lonnermark, A., A. Claesson, J. Lindstrom, Y.Z. Li and M. Kumm et al., 2012. Full-scale fire tests with a commuter train in a tunnel. MSc Thesis, SP Technical Research Institute of Sweden, Sweden, Europe.

Maluk, C., L. Bisby and G.P. Terrasi, 2017. Effects of polypropylene fibre type and dose on the propensity for heat-induced concrete spalling. Eng. Struct., 141: 584-595.
CrossRef  |  Direct Link  |  

Maraveas, C. and A.A. Vrakas, 2014. Design of concrete tunnel linings for fire safety. Struct. Eng. Int., 24: 319-329.
CrossRef  |  Direct Link  |  

Migoya, E., J. Garcia, A. Crespo, C. Gago and A. Rubio, 2011. Determination of the heat release rate inside operational road tunnels by comparison with CFD calculations. Tunnelling Underground Space Technol., 26: 211-222.
CrossRef  |  Direct Link  |  

Mussa, M.H., A.A. Mutalib, R. Hamid and S.N. Raman, 2018. Blast damage assessment of symmetrical box-shaped underground tunnel according to Peak Particle Velocity (PPV) and Single Degree Of Freedom (SDOF) Criteria. Symmetry, 10: 1-20.
CrossRef  |  Direct Link  |  

Mussa, M.H., A.A. Mutalib, R. Hamid and S.N. Raman, 2018. Dynamic properties of high volume Fly Ash Nanosilica (HVFANS) concrete subjected to combined effect of high strain rate and temperature. Lat. Am. J. Solids Struct., 15: 1-19.
CrossRef  |  Direct Link  |  

Mussa, M.H., A.A. Mutalib, R. Hamid, S.R. Naidu and N.A.M. Radzi et al., 2017. Assessment of damage to an underground box tunnel by a surface explosion. Tunnelling Underground Space Technol., 66: 64-76.
Direct Link  |  

Palm, A., M. Kumm and H. Ingason, 2016. Full scale firefighting tests in the Tistbrottet mine. Fire Technol., 52: 1519-1537.
Direct Link  |  

Pimienta, P., D. Pardon and J.C. Mindeguia, 2010. Fire behaviour of high performance concrete-an experimental investigation on Spalling risk. Proceedings of the 6th International Conference on Structures in Fire (SIF'10), June 2-4, 2010, Michigan State University, East Lansing, Michigan, USA., pp: 880-889.

Radzi, N.A.M., R. Hamid and A.A. Mutalib, 2016. A review of methods, issues and challenges of Small-scale fire testing of tunnel lining concrete. J. Appl. Sci., 16: 293-301.
CrossRef  |  Direct Link  |  

Robert, F., C. Collignon and M. Scalliet, 2013. Large scale fire test on tunnel segment: Real boundary conditions in order to evaluate spalling sensitivity and fire resistance. Proceedings of the 3rd International Workshop on Concrete Spalling due to Fire Exposure, MATEC Web Vol. 6, September 17, 2013, EDP Sciences, Les Ulis, France, ISBN:978-2-7598-1074-1, pp: 1-7.

Saadun, A., A.A. Mutalib, R. Hamid and M.H. Mussa, 2016. Behaviour of polypropylene fiber reinforced concrete under dynamic impact load. J. Eng. Sci. Technol., 11: 684-693.
Direct Link  |  

Standing, J.R. and C. Lau, 2017. Small-scale model for investigating tunnel lining deformations. Tunnelling Underground Space Technol., 68: 130-141.
Direct Link  |  

Wang, F., M. Wang and J. Huo, 2017. The effects of the passive fire protection layer on the behavior of concrete tunnel linings: A field fire testing study. Tunnelling Underground Space Technol., 69: 162-170.
CrossRef  |  Direct Link  |  

Yan, Z.G., H.H. Zhu and J.W. Ju, 2013. Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures. Constr. Build. Mater., 38: 610-618.
CrossRef  |  Direct Link  |  

Yan, Z.G., H.H. Zhu, J.W. Ju and W.Q. Ding, 2012. Full-scale fire tests of RC metro shield TBM tunnel linings. Constr. Build. Mater., 36: 484-494.
CrossRef  |  Direct Link  |  

Yan, Z.G., Y. Shen, H.H. Zhu, X.J. Li and Y. Lu, 2015. Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature. Fire Saf. J., 71: 86-99.
CrossRef  |  Direct Link  |  

Zhang, Y., M. Zeiml, M. Maier, Y. Yuan and R. Lackner, 2017. Fast assessing spalling risk of tunnel linings under RABT fire: From a coupled thermo-hydro-chemo-mechanical model towards an estimation method. Eng. Struct., 142: 1-19.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved