Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 9
Page No. 2928 - 2935

Polysulfone Copolymer as Polymer Electrolyte for Alkaline Fuel Cell and Li-Ion Battery Applications

Authors : S.E. Smirnov, N.A. Yashtulov, I.A. Putsylov, S.S. Smirnov and M.V. Lebedeva

References

Agrawal, R.C. and G.P. Pandey, 2008. Solid polymer electrolytes: Materials designing and all-solid-state battery applications; An overview. J. Phys. Appl. Phys., 41: 1-18.

Arico, A.S., P. Bruce, B. Scrosati, J.M. Tarascon and W. van Schalkwijk, 2005. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mat., 4: 366-377.
CrossRef  |  PubMed  |  Direct Link  |  

Brissot, C., M. Rosso, J.N. Chazalviel, P. Baudry and S. Lascaud, 1998. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochimica Acta, 43: 1569-1574.
CrossRef  |  Direct Link  |  

Chebotarev, V.P., V.A. Zhorin, S.E. Smirnov, I.A. Putsylov and S.S. Smirnov, 2004. Development and investigation of solid polymer electrolytes for Lithium cells. Plast. Synth. Prop. Recycl. Appl., 2: 44-47.

Chen, S.L., A.B. Bocarsly and J. Benziger, 2005. Nafion-layered sulfonated polysulfone fuel cell membranes. J. Power Sources, 152: 27-33.
CrossRef  |  Direct Link  |  

Chilaka, N. and S. Ghosh, 2012. Solid-state poly (ethylene glycol)-polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties. Electrochim. Acta, 62: 362-371.
CrossRef  |  Direct Link  |  

Devrim, Y., S. Erkan, N. Bac and I. Eroglu, 2009. Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. Intl. J. Hydrogen Energy, 34: 3467-3475.
Direct Link  |  

Diouf, B. and R. Pode, 2015. Potential of lithium-ion batteries in renewable energy. Renewable Energy, 76: 375-380.
CrossRef  |  Direct Link  |  

Kuleshov, N.V., V.N. Kuleshov, S.A. Dovbysh, E.Y. Udris and S.A. Grigor’ev et al., 2016. Polymeric composite diaphragms for water electrolysis with alkaline electrolyte. Russ. J. Appl. Chem., 89: 618-621.
Direct Link  |  

Merle, G., M. Wessling and K. Nijmeijer, 2011. Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci., 377: 1-35.
Direct Link  |  

Nishimoto, A., M. Watanabe, Y. Ikeda and S. Kohjiya, 1998. High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers. Electrochim. Acta, 43: 1177-1184.
Direct Link  |  

Nishizawa, A., J. Kallo, O. Garrot and J. Weiss-Ungethum, 2013. Fuel cell and Li-ion battery direct hybridization system for aircraft applications. J. Power Sources, 222: 294-300.
CrossRef  |  Direct Link  |  

Pollet, B.G., I. Staffell and J.L. Shang, 2012. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochim. Acta, 84: 235-249.
CrossRef  |  Direct Link  |  

Shah, S.A.S., P. Basak and S.V. Manorama, 2010. Polymer nanocomposites as solid electrolytes: Evaluating ion-polymer and polymer-nanoparticle interactions in PEG-PU/PAN semi-IPNs and Titania systems. J. Phys. Chem. C., 114: 14281-14289.
CrossRef  |  Direct Link  |  

Shukla, N. and A.K. Thakur, 2011. Enhancement in electrical and stability properties of amorphous polymer based nanocomposite electrolyte. J. Non Cryst. Solids, 357: 3689-3701.
CrossRef  |  Direct Link  |  

Smirnov, S.E., S.A. Siling, N.V. Korovin, A.A. Ogorodnikov and D.A. Morgunov, 2001. Polymer electrolytes for lithium power sources. Russ. J. Electrochem., 37: 987-990.
Direct Link  |  

Smirnov, S.S., V.A. Zhorin and M.R. Kiselev, 2010. Synthesis and electrochemical properties of lithium-vanadium bronze. Russ. J. Appl. Chem., 83: 1215-1219.
Direct Link  |  

Stephan, A.M. and K.S. Nahm, 2006. Review on composite polymer electrolytes for lithium batteries. Polymer, 47: 5952-5964.
CrossRef  |  

Vinodh, R., M. Purushothaman and D. Sangeetha, 2011. Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications. Intl. J. Hydrogen Energy, 36: 7291-7302.
CrossRef  |  Direct Link  |  

Vorob’ev, I.S., V.A. Zhorin, K.S. Smirnov and S.E. Smirnov, 2015. Synthesis and electrochemical properties of composite cathode materials. Russ. J. Appl. Chem., 88: 394-397.
Direct Link  |  

Wilberforce, T., A. Alaswad, A. Palumbo, M. Dassisti and A.G. Olabi, 2016. Advances in stationary and portable fuel cell applications. Intl. J. Hydrogen Energy, 41: 16509-16522.
CrossRef  |  Direct Link  |  

Winter, M. and R.J. Brodd, 2004. What are batteries, fuel cells and supercapacitors? Chem. Rev., 104: 4245-4270.
Direct Link  |  

Yashtulov, N.A., L.N. Patrikeev, V.O. Zenchenko, M.V. Lebedeva and N.K. Zaitsev et al 2016. Palladium-platinum-porous silicon nanocatalysts for fuel cells with direct formic acid oxidation. Nanotechnol. Russ., 11: 562-568.
CrossRef  |  Direct Link  |  

Yashtulov, N.A., M.V. Lebedeva and N.V. Kuleshov, 2016. Porous silicon nanocomposites with palladium nanoparticles for renewable energy sources. Intl. J. Adv. Mech. Civil Eng., 3: 111-114.
Direct Link  |  

Zhou, J., M. Unlu, J.A. Vega and P.A. Kohl, 2009. Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells. J. Power. Sources, 190: 285-292.
CrossRef  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved