Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 21
Page No. 8061 - 8066

Strength Evaluation of Cocos nucifera Fibre Reinforced Concrete

Authors : O. D. Atoyebi, O. M. Osuolale and E. M. Ibitogbe

References

ASTM., 2015. Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, West Conshohocken, Pennsylvania, USA.,.

ASTM., 2018. C150/C150M-18 standard specification for Portland Cement. ASTM International, West Conshohocken, Pennsylvania, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/C150C150M-18.htm

Agopyan, V., H. Savastano Jr, V.M. John and M.A. Cincotto, 2005. Developments on vegetable fibre-cement based materials in Sao Paulo, Brazil: An overview. Cem. Concr. Compos., 27: 527-536.
CrossRef  |  Direct Link  |  

Ali, M. and N. Chouw, 2013. Experimental investigations on coconut-fibre rope tensile strength and pullout from coconut fibre reinforced concrete. Constr. Build. Mater., 41: 681-690.
CrossRef  |  Direct Link  |  

Ali, M., 2010. Coconut fibre-a versatile material and its applications in engineering. Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, June 28-30, 2010, Marche Polytechnic University, Ancona, Italy, pp: 1441-1454.

Ali, M., 2011. Coconut fibre: A versatile material and its applications in engineering. J. Civ. Eng. Constr. Technol., 2: 189-197.
Direct Link  |  

Anifowoshe, F.A. and N.E. Nwaiwu, 2016. The use of coconut fibre ash as a partial replacement for cement. Br. J. Appl. Sci. Technol., 17: 1-11.
CrossRef  |  Direct Link  |  

Anonymous, 1983. BS 1881 116; Testing concrete: Method for determination of compressive strength of concrete cubes. BSI Group, London, Engalnd, UK. https://www.scribd.com/document/292768848/BS-1881-116-1983-Testing-Concrete-Method-for-Determination-of-Compressive-Strength-of-Concrete-Cubes.

Atnaw, S.M., S.A. Sulaiman and S. Yusup, 2011. A simulation study of downdraft gasification of oil-palm fronds using ASPEN PLUS. J. Applied Sci., 11: 1913-1920.
CrossRef  |  Direct Link  |  

Atoyebi, O.D. and O.M. Sadiq, 2018. Experimental data on flexural strength of reinforced concrete elements with waste glass particles as partial replacement for fine aggregate. Data Brief, 18: 846-859.
CrossRef  |  PubMed  |  Direct Link  |  

Atoyebi, O.D., A.A. Adediran and A.C. Oluwatimilehin, 2018. Physical and mechanical properties evaluation of particle board produced from saw dust and plastic waste. Intl. J. Eng. Res. Afr., 40: 1-8.
CrossRef  |  Direct Link  |  

Atoyebi, O.D., C.O. Osueke, S. Badiru, A.J. Gana and I. Ikpotokin et al., 2019. Evaluation of particle board from sugarcane bagasse and corn cob. Intl. J. Mech. Eng. Technol., 10: 1193-1200.
Direct Link  |  

Atoyebi, O.D., T.F. Awolusi and I.E. Davies, 2018. Artificial neural network evaluation of cement-bonded particle board produced from red iron wood (Lophira alata) sawdust and palm kernel shell residues. Case Stud. Constr. Mater., 9: 1-11.
CrossRef  |  Direct Link  |  

Ede, A.N., O.A. Samuel, I.U. Emmanuel and P.D.E. Chidozie, 2014. Life cycle assessment of environmental impacts of using concrete or timber to construct a duplex residential building. IOSR J. Mech. Civ. Eng., 11: 62-72.
Direct Link  |  

Filho, R.D.T., K. Ghavami, G.L. England and K. Scrivener, 2003. Development of vegetable fibre-mortar composites of improved durability. Cem. Concr. Compos., 25: 185-196.
CrossRef  |  Direct Link  |  

Fordos, Z., 1989. Natural or modified cellulose fibers as reinforcement in cement composites. Concr. Technol. Des., 5: 173-207.

Modupe, A.E., O.D. Atoyebi, A.O. Basorun, A.J. Gana and J.A. Ramonu et al., 2019. Development and performance evaluation of crumb rubber-bio-oil modified hot mix asphalt for sustainable highway pavements. Intl. J. Mech. Eng. Technol., 10: 273-287.
Direct Link  |  

Modupe, A.E., O.D. Atoyebi, O.E. Oluwatuyi, O.J. Aladegboye and A.A. Busari et al., 2018. Dataset of mechanical, marshall and rheological properties of crumb rubber-bio-oil modified hot mix asphalt for sustainable pavement works. Data Brief, 21: 63-70.
CrossRef  |  PubMed  |  Direct Link  |  

Odeyemi, S.O., M.A. Akinpelu, O.D. Atoyebi and R.T. Yahaya, 2017. Determination of load carrying capacity of clay bricks reinforced with straw. Intl. J. Sustainable Constr. Eng. Technol., 8: 57-65.
Direct Link  |  

Sadiq, O.M. and O.D. Atoyebi, 2015. Flexural strength determination of reinforced concrete elements with waste glass as partial replacement for fine aggregates. NSE. Tech. Trans., 49: 74-81.
Direct Link  |  

Satyanarayana, K.G., K. Sukumaran, P.S. Mukherjee, C. Pavithran and S.G.K. Pillai, 1990. Natural fibre-polymer composites. Cem. Concr. Compos., 12: 117-136.
CrossRef  |  Direct Link  |  

Savastano Jr, H., V. Agopyan, A.M. Nolasco and L. Pimentel, 1999. Plant fibre reinforced cement components for roofing. Constr. Build. Mater., 13: 433-438.
CrossRef  |  Direct Link  |  

Shreeshail, B.H., J. Chougale, D. Pimple and A. Kulkarni, 2014. Effects of coconut fibers on the properties of concrete. Intl. J. Res. Eng. Technol., 3: 5-11.
Direct Link  |  

Verma, D., P.C. Gope, A. Shandilya, A. Gupta and M.K. Maheshwari, 2013. Coir fibre reinforcement and application in polymer composites: A review. J. Mater. Environ. Sci., 4: 263-276.
Direct Link  |  

Yalley, P.P. and A.S.K. Kwan, 2009. Use of coconut fibre as an enhancement of concrete. J. Eng. Technol., 3: 54-73.
Direct Link  |  

Zakikhani, P., R. Zahari, M.T.H. Sultan and D.L. Majid, 2014. Extraction and preparation of bamboo fibre-reinforced composites. Mater. Des., 63: 820-828.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved