Research Journal of Biological Sciences

Year: 2010
Volume: 5
Issue: 12
Page No. 764 - 768

Evaluation of Hydroxyapatite Nanoparticles’ Biocompatibility at Different Concentrations on the Human Peripheral Blood Mononuclear Cells: An in vitro Study

Authors : Hossein Shahoon, Zahra Yadegari, Naser Valaie, Sareh Farhadi and Roya Hamedi

References

Albrecht, C., A.M. Scherbart, D. van Berlo, C.M. Braunbarth, R.P. Schins and J. Scheel, 2009. Evaluation of cytotoxic effects and oxidative stress with hydroxyapatite dispersions of different physicochemical properties in rat NR8383 cells and primary macrophages. Toxicol. In vitro, 23: 520-530.
CrossRef  |  PubMed  |  Direct Link  |  

Ferraz, M.P., A.Y. Mateus, J.C. Sousa and F.J. Monteiro, 2008. Nanohydroxyapatite microspheres as delivery system for antibiotics: Release kinetics, antimicrobial activity and interaction with osteoblasts. J. Biomed. Mater. Res Part A, 81: 994-1004.
CrossRef  |  PubMed  |  Direct Link  |  

Gerlach, K.L. and D. Niehues, 2007. Treatment of jaw cysts with a new kind of nanoparticular hydroxylapatite. Oral Maxillofacial Surg., 11: 131-137.
CrossRef  |  PubMed  |  Direct Link  |  

Grigor`ian, A.S., L.A. Grigor`iants and M.N. Podoinikova, 2000. A comparative analysis of the efficacy of different types of filling materials in the surgical elimination of tooth perforations (experimental morphological research). Stomatologiia, 79: 9-12.
PubMed  |  Direct Link  |  

Heinz, B. and A. Kasaj, 2009. Clinical effects of nanocrystallin hydroxyapatite paste in the treatment of in trabony periodontal defects. J. Clin. Oral Invest., 52: 28-68.

Hsieh, M.F., J.K. Li, S.H. Huang, R.A. Sperling and W. Parak, 2009. Tracking of cellular uptake of gydrophikic Cd/Zns quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells. J. Nanosci. Nanotechnol., 92: 27-62.

Huber, F.X., N. Mcarthur, J. Hillmeier, H.J. Kock and M. Baier et al., 2006. Void filling of tibia compression racturezones using a novel resorbable nanocrystalline hydroxyapatite pastein combination with a hydroxyapatite ceramic core: First clinicalresults. Arch. Orthop. Trauma Surg., 26: 533-540.

Kasaj, A., B. Rohrig, G.G. Zafiropoulos and B. Willershausen, 2008. Clinical evaluation of nanocrystalline hydroxyapatite paste in the treatment of human periodontal bony defects-a randomized controlled clinical trial: 6-month results. J. Periodontol., 79: 394-400.
CrossRef  |  PubMed  |  Direct Link  |  

Kim, K., D. Dean, A. Lu, A.G. Mikos and J.P. Fisher, 2011. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater., 7: 1249-1264.
CrossRef  |  PubMed  |  Direct Link  |  

Krejci, C.B., N.F. Bissada, C. Farah and H. Greenwell, 1987. Clinical-evaluation of porous and nonporous hydroxyapatite in the treatment of human periodontal bony defects. J. Periodontol., 58: 521-528.
PubMed  |  Direct Link  |  

Mateus, A.Y.P., C.C. Barrias, C. Ribeiro, M.P. Ferraz and F.J. Monteiro, 2008. Comparative study of nanohydroxyapatite microspheres for medical applications. J. Biomed. Mater. Res. Part A, 86: 483-493.
CrossRef  |  PubMed  |  Direct Link  |  

Matsumoto, T., M. Okazaki, M. Inoue, S. Yamaguchi and T. Kusunose et al., 2004. Hydroxyapatite nanoparticles as a controlled release carrier of protein. Biomaterials, 17: 3807-3812.

Motskin, M., D.M. Wright, K. Muller, N. Kyle, T.G. Gard, A.E. Porter and J.N. Skepper, 2009. Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials, 30: 3307-3317.
CrossRef  |  PubMed  |  Direct Link  |  

Nam, Y.H., J.I. Kim, S.J. Um, S.K. Lee and C.H. Son, 2011. Absence of hyper-responsiveness to methacholine after specific bronchial provocation tests in a worker with hydroxyapatite-induced occupational asthma. J. Allergy Asthma Immunol. Res., 3: 135-137.
CrossRef  |  PubMed  |  Direct Link  |  

Puvvada, N., P.K. Panigrahi and A. Pathak, 2010. Room temperature synthesis of highly hemocompatible hydroxyapatite, study of their physical properties and spectroscopic correlation of particle size. Nanoscale, 2: 2631-2638.
CrossRef  |  Direct Link  |  

Scheel, J., S. Weimans, A. Thiemann, E. Heisler and M. Hermann, 2009. Exposure of the murine RAW 264.7 macrophage cell line to hydroxyapatite dispersions of various composition and morphology: Assessment of cytotoxicity, activation and stress response. Toxicol. In vitro, 23: 531-548.
CrossRef  |  PubMed  |  Direct Link  |  

Schwarz, F., K. Bieling, T. Latz, E. Nuesry and J. Becker, 2006. Healing of intrabony peri-implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim) or a bovine-derived xenograft (Bio-Oss) in combination with a collagen membrane (Bio-Gide). A case series. J. Clin. Periodontol., 33: 491-499.
CrossRef  |  PubMed  |  Direct Link  |  

Shahoon, H., T. Ghazanfar, N. Valaie and M. Safaee, 2010. Evaluation of human endochondral bone matrix gelatin cytotoxicity on the human peripheral WBC mononuclear cells. J. Shahed Univ., 17: 55-62.
Direct Link  |  

Sheikh, F.A., N.A.M. Barakat, M.A. Kanjwal, R. Nirmala, J.H. Lee, H. Kim and H.Y. Kim, 2010. Electrospun titanium dioxide nanofibers containing hydroxyapatite and silver nanoparticlesas future implant materials. J. Mater. Sci. Mater. Med., 21: 2551-2559.
CrossRef  |  PubMed  |  Direct Link  |  

Suchanek, W. and Y. Masahiro, 2004. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Gateway, 21: 665-736.

Tamai, N., A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi and H. Yoshikawa, 2002. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res., 59: 110-117.
CrossRef  |  Direct Link  |  

Thein-Han, W.W., J. Shah and R.D. Misra, 2009. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite. Acta Biomater., 5: 2668-2679.
CrossRef  |  PubMed  |  Direct Link  |  

Thorwarth, M., S. Schultze-Mosgau, P. Kessler, J. Wiltfang and K.A. Schlegel, 2005. Bone regeneration in osseous defects using aresorbable nanoparticular hydroxyapatite. J. Oral Maxillofac. Surg., 63: 1626-1633.

Uchida, A., Y. Shinto, N. Araki and K. Ono, 1992. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthopaedic Res., 10: 440-445.
CrossRef  |  PubMed  |  Direct Link  |  

Webster, T.J., C. Ergun, R.H. Doremus, R.W. Siegel and R. Bizios, 2000. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 21: 1803-1810.
CrossRef  |  

Zhao, Y., Y. Zhang, F. Ning, D. Guo and Z. Xu, 2009. Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J. Biomed. Mater. Res. Part B: Applied Biomater., 83: 121-126.
CrossRef  |  PubMed  |  Direct Link  |  

Zhou, G., Y. Li, W. Xiao, L. Zhang, Y. Zuo, J. Xue and J.A. Jansen, 2007. Synthesis, characterization and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J. Biomed. Mater. Res. Part A, 85: 927-937.
CrossRef  |  PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved